首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the complete exchange of the interlamellar anions of a 2-D cationic inorganic material. The α,ω-alkanedisulfonates were exchanged for α,ω-alkanedicarboxylates, leading to two new cationic materials with the same [Pb(2)F(2)](2+) layered architecture. Both were solved by single crystal X-ray diffraction and the transformation also followed by in situ optical microscopy and ex situ powder X-ray diffraction. This report represents a rare example of metal-organic framework displaying highly efficient and complete replacement of its anionic organic linker while retaining the original extended inorganic layer. It also opens up further possibilities for introducing other anions or abatement of problematic anions such as pharmaceuticals and their metabolites.  相似文献   

2.
In this paper, a simple method for the separation and determination of common inorganic anions by fast ion-exchange chromatography, using a modified short (25 mm x 4.6 mm) monolithic column, is reported. Coating the column with a cationic surfactant, cetylpyridinium chloride (CPC), the isocratic separation of some inorganic anions in minutes was possible, by direct or indirect UV detection. The coated column demonstrated excellent stability over time, even at a high flow-rate, giving retention times with an average relative standard deviation of 1.3% for over 10 consecutive runs. The developed column exhibited unusual selectivity for common anions, was successfully applied to the rapid analysis of inorganic anions of food samples, river water and factory waste water samples.  相似文献   

3.
Yao L  Liu Q  Li Y  Yao S 《Journal of separation science》2011,34(18):2441-2447
Separation of inorganic anions by capillary electrophoresis (CE) is usually conducted in co-electroosmotic mode due to the large electrophoretic mobilities of inorganic anions. Semipermanent surfactant coatings have been shown to be effective for CE of inorganic anions due to their strong capability of electroosmotic flow (EOF) manipulation. However, semipermanent coatings often suffer from their unsatisfactory stability. In addition, organic solvent additives are usually required to adjust the selectivity, which also aggravate the degradation of coating. In this work, a novel semipermanent coating consisting of cationic Gemini surfactant 18-10-18 and nonionic surfactant Tween 20 was developed to separate inorganic anions in CE. This coating is easy to prepare and more stable than pure Gemini coating. The introduction of nonionic surfactant in the coating not only suppresses the reversed EOF but can also adjust the selectivity of separation. Good separations of six model anions were achieved, the separation efficiency was as high as 65040-169700 plates/m and the RSDs of the migration times were less than 0.5 and 2.5% for run-to-run and day-to-day assays, respectively. Calibration curves were linear in the range of 0.05-5.0 mM; the detection limits ranged from 20 to 50 μM. More importantly, no organic solvents are required in the background buffer to achieve the satisfactory separations. This guarantees the coating stability and makes the method greener than most of other methods for CE of inorganic anions.  相似文献   

4.
H Fei  CS Han  SR Oliver 《Inorganic chemistry》2012,51(16):8655-8657
An extended metal oxide possessing a cationic charge on the host has been synthesized by hydrothermal methods. The structure consists of 1D antimony oxide [Sb(6)O(7)](4+) chains with a new structural motif of four Sb atoms wide and unprotonated sulfate anions between the chains. The material was characterized by powder and single-crystal X-ray diffraction. Thermal behavior and chemical resistance in aqueous acidic conditions (pH ~2) indicate a highly stable cationic material. The stability is attributed to the entirely inorganic composition of the structure, where 1D covalently extended chains are electrostatically bound to divalent anions.  相似文献   

5.
The separation of the principal inorganic anions (bromide, carbonate, chlorate, chloride, fluoride, nitrate, nitrite, sulfate, phosphate) has been achieved using a capillary electrophoresis system with indirect UV detection at 260 nm. Several types of cationic surfactants (quaternary ammonium, phosphonium or methonium) were tested as electroosmotic flow modifiers and added to a chromatebased buffer prepared from potassium dichromate. The influence of many physicochemical parameters such as nature and concentration of cationic surfactant, buffer pH, dichromate concentration buffer, voltage and temperature upon the migration time of an analyte anion, peak efficiency, asymmetry factor, and finally resolution has been investigated. A linear relationship between the corrected area and the anion concentration in the 2.5–50 ppm range was obtained, thus allowing the quantitative analysis of anions in mineral water. Finally, by increasing the hydrodynamic injection time, the separation of inorganic anions at a low concentration level of 50 ng/ml was achieved without any loss of resolution.  相似文献   

6.
The capability of the suppressed conductometric detection ion chromatography (IC) was investigated for the separation and determination of inorganic anions (F-, Cl-, NO3- and SO4(2-)) in standard reference materials SRM-1648 urban particulate matter following ultrasonic extraction. The effects of the cationic surfactant (SDS) and the anionic surfactant (CTAB) on ultrasonic extraction efficiency of inorganic anions from complex matrix of airborne particulate matter were investigated. The results showed that surfactant can enhance the extraction efficiency. Finally, the concentrations of inorganic anions in the atmosphere of the city of Isfahan were determined. The results showed a trend of SO4(2-) > NO3- > Cl- > F-.  相似文献   

7.
In capillary electrophoresis (CE) analysis of small inorganic anions, the ability to control the electroosmotic flow (EOF) and the ability to alter the electrophoretic mobility of the ions are essential to improve resolution and separation speed. In this work, a CE method for separation of small inorganic anions using indirect detection in mixed methanol/water buffers is presented. The suitability of different UV absorbing probes commonly used for indirect detection including chromate, iodide, phthalate, benzoate, trimellitate, and pyromellitate, in mixed methanol/water buffers is examined. The effect of the electrolyte buffer system, including the pH, buffer concentration and the organic solvent on the electrophoretic mobility of the probes and analytes are also investigated. The EOF was reversed using cationic surfactant, cetyltrimethylammonium bromide (CTAB) so ions were separated under co-EOF mode. The organic solvent alters the electrophoretic mobility of the probes and the analytes differently and hence choice of the appropriate probe is essential to achieve high degree of detection sensitivity. Separations of six anions in less than 2.5 min were accomplished in buffers containing up to 30% MeOH. Adjustment of the methanol content helps to improve the selectivity and resolution of inorganic anions. Limit of detection, reproducibility and application of the method for quantification of anions in water samples will also be discussed.  相似文献   

8.
Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.  相似文献   

9.
The quenching of fluorescence of 10-methylacridinium ion by inorganic anions in aerated aqueous solutions was studied at room temperature. In the case of cationic surfactants, with chloride and bromide anions as counterions, characteristic breaks on the Stern-Volmer plots could be observed at concentrations corresponding to the critical micelle concentration of the surfactants. It is shown that the ratio of the slopes of the two linear fragments of the plots, in the micellar and premicellar concentration ranges, gives an estimate of the value of the ionization degree, alpha, of the micelles. This approach is applicable also in aqueous-alcohol systems.  相似文献   

10.
The separation of a complex mixture of inorganic and organic anions by ion chromatography–capillary electrophoresis using a cationic polymer added to the background electrolyte and indirect UV detection has been studied. The addition of unmodified polymer to an electrolyte suitable for indirect detection resulted in the appearance of a system peak due to the counter-anion on the polymer and while the position of the analytes relative to this system peak could be changed, this was found to be an unacceptable approach for mixtures of large numbers of analytes. Although conversion of the polymer to replace the counter-ion with the indirect UV detection probe ion simplified the system, this approach restricted the flexibility of the system because the probe and polymer concentration were necessarily linked. This limitation could be overcome by selecting the appropriate type of probe ion, with probes having a low ion-exchange selectivity coefficient providing greater retention of analytes than probes with a high ion-exchange selectivity coefficient. Three electrolyte systems with different probes (benzoate, chromate and phthalate) were modelled using a previously derived migration equation and this was used to optimise the electrolyte composition to enable the separation of a mixture of 24 inorganic and organic anions within 7 min. The electrolyte composition was then optimised for the analysis of anions in Bayer liquor with the final separation selectivity being substantially improved for selected key analytes.  相似文献   

11.
Capillary electrophoretic separations of inorganic anions are performed using a capillary coated with a mixture of the cationic surfactant didodecyldimethylammonium bromide (DDAB) and the zwitterionic surfactant 1,2-dilauroyl-sn-phosphatidylcholine (DLPC). These double-chained surfactants form semi-permanent coatings on the capillary wall, which allows the excess surfactant to be removed from the buffer prior to separation. Interactions between surfactant aggregates in the buffer and analyte anions are thus eliminated. The electroosmotic flow (EOF) can be altered from fully reversed (100% DDAB) to near zero (100% DLPC) using different ratios of DDAB and DLPC. Controlling the EOF allows for improved resolution of the anions while maintaining a rapid, co-EOF separation, free from analyte-surfactant additive interactions.  相似文献   

12.
Seventeen inorganic and organic anions, that normally are insufficiently separated via ion chromatography, were completely separated by the addition of an organic solvent to a solution of BGE combined with an adjustment of the apparent pH via CE in combination with indirect UV absorbance detection. Methanol, ethanol, and acetonitrile were examined for their utility in manipulating the selective separation of anions. Methanol and acetonitrile were better modifiers than ethanol at enhancing the resolution of anions comigrating in an aqueous solution of BGE. Methanol was selected as the modifier that provided the largest separation window that could achieve a complete separation of the target analytes. Via the use of methanol, manipulation of the selectivity between inorganic anions and that between inorganic and organic anions was enhanced, but the separation between organic anions remained difficult when only methanol was used. By varying the apparent pH of the BGE in the presence of 10% v/v methanol, however, the separation selectivity between organic anions was substantially improved. Eventually, 7 inorganic and 10 organic anions were simultaneously separated using BGE at a pH of 6.3 in the presence of 10% v/v methanol.  相似文献   

13.
Manipulation of the electroosmotic flow (EOF) is essential for achieving optimized separations of small anions by capillary electrophoresis (CE). In this work, efficient suppression or reversal of EOF is achieved upon addition of small amounts of the cationic surfactants, cetyltrimethylammonium bromide (CTAB) or didodecyldimethylammonium bromide (DDAB) to the electrophoretic buffer. Highly stable and reversed EOF are achieved using the surfactants in the presence of up to 50% MeOH. In aqueous and low methanol containing solutions (up to 30%, v/v) surface aggregation of the surfactants at the capillary wall occurs at a concentration below the critical micelle concentration (CMC). The impact of MeOH on reversed EOF is predominantly a function of the diminished zeta potential of the silica, and to a lesser extent on the CMC in the bulk solution of the surfactant. Fast baseline separation and selectivity changes for small inorganic anions are observed when mixed aqueous-organic buffers are employed. Changes in EOF, micellar properties of the surfactant and selectivity for inorganic anions upon addition of various percent of methanol are also discussed.  相似文献   

14.
Important general structural and energetic characteristics are provided for atomic and molecular anions, before spectroscopic quantities such as electron affinity are defined to characterize stable anions. Prepared in this way one encounters atomic anions in the first scope. After a short prelude with diatomic molecular anions an attempt is made to juxtapose anions of alkanes and silanes and the corresponding olefinic systems. Associated with these species there is the phenomenon of short-lived resonances on the one hand, while on the other hand the anions can be stabilized by appropriate geometry distortions or substituents. Distonic radical anions, where the radical-center does not coincide with the charge center, or dipolarly-bound anions, where the extra electron is very feebly bound, are not very well known hitherto, but have a wide field of application in organic chemistry. The presentation of solvated anions with a special focus on SN2-reactions completes this area. Only a few examples document the unique double-Rydherg anions, which are characterized by a pair of electrons bound loosely to a cationic core. The multiply-charged anions are shown to have a very wide field of application in the sequel. The initial “disappointment” that the well-known small textbook-polyanions do not exist in the gas phase is followed by the apothegm “more space for charge separation”. With this key- note a wide field for organic (carbonic acids, carbon clusters) as well as inorganic compounds (complexes) is opened.  相似文献   

15.
16.
Hong Yu  Ruishu Li 《Chromatographia》2008,68(7-8):611-616
An investigation has been conducted into the effect of column temperature on the retention of inorganic anions and organic acids in non-suppressed ion chromatography on an anion-exchange column. Potassium biphthalate and p-hydroxybenzoic acid–tris–boric acid were used as mobile phases. The column temperature was from 25 to 50 °C. Endothermic and exothermic retention of inorganic anions were both observed when potassium biphthalate was used as mobile phase. When p-hydroxybenzoic acid–tris–boric acid was used as mobile phase, however, endothermic behavior only was observed. Moreover, for the two mobile phases, variation of the retention time of the system peaks with changing temperature was reversed. For retention of the organic acids, only endothermic behavior was observed with the two mobile phases. Variation of retention time was greater when p-hydroxybenzoic acid–tris–boric acid was used as mobile phase than when potassium biphthalate was used. These results indicated the exchange reaction in anion-exchange chromatography could be either endothermic or exothermic, depending on the solute and mobile phase ions involved. Different relative changes of retention time were observed for individual inorganic anions and organic acids with increasing column temperature. In general, variation of retention time with increasing temperature was greater for strongly retained inorganic anions and organic acids than for weakly retained species. Van’t Hoff plots for inorganic anions, organic acids, and system peaks were linear. Selectivity variation of the retention of inorganic anions and organic acids was achieved by changing the temperature. In achieving optimum separation of inorganic anions and organic acids, temperature was a valuable tool. To reduce the retention times of the ions and avoid interference from system peaks in non-suppressed anion-exchange ion chromatography with the two mobile phases, a low column temperature, for example, 35 °C, was best.  相似文献   

17.
Resin-bound organic ionic bases (RBOIBs) were developed in which tetraalkyl-ammonium or phosphonium cations are covalently attached to solid resins. The application tests showed that the performance of the tetraalkyl-ammonium-type RBOIBs is slightly better than that of the corresponding Cs salts in Cu-catalyzed C-N cross-couplings, while the tetraalkylphosphonium-type RBOIBs are significantly better than all the inorganic bases. With these newly developed RBOIBs, room-temperature Cu-catalyzed C-N coupling with various nonactivated aryl iodides and even aryl bromides can be readily accomplished. Moreover, RBOIBs can be easily recycled and reused for a number of times without much drop of activity. The good performances of RBOIBs are proposed to arise from the relatively weak binding forces between the cationic polymer backbone and basic anions, as opposed to the strong metal-anion interactions in the inorganic bases. Further applications of RBOIBs in Ni-catalyzed Suzuki-type couplings at room temperature, Cu-catalyzed C-N couplings at -30 °C, a Pd-catalyzed Heck reaction at 60 °C, and Cu-catalyzed C-S couplings at room temperature demonstrate that RBOIBs are generally applicable bases with improved performance for many other types of organic transformations.  相似文献   

18.
Hradski  Jasna  Bodor  R&#;bert  Mas&#;r  Mari&#;n 《Chromatographia》2014,77(21):1461-1468

Analysis of inorganic ions in cerebrospinal fluid (CSF) is used mainly in the diagnostics of central nervous system diseases, such as Alzheimer’s disease or multiple sclerosis. A new analytical method for fast determination of inorganic cations (ammonium, calcium, magnesium, sodium and potassium) and anions (chloride, sulfate, nitrite and nitrate) in CSF on an electrophoretic microchip was developed in this context. Zone electrophoresis (ZE) separations were performed on the microchip with coupled channels (CC) and contact conductivity detection. Two different propionate background electrolytes were used for the sequential determination of cations at pH 3.1 and anions at pH 4.3. ZE was used for the determination of cationic constituents while ZE–ZE approach was employed for the determination of chloride in the first separation channel on the CC microchip and other anionic micro-constituents in the second channel. LOD values were in the range of 0.003–0.012 mg L−1 and 0.019–0.047 mg L−1 for cations and anions, respectively. Repeatability of migration time was up to 1.2 % for both cations and anions. Repeatability of peak area ranged from 0.3 to 5.6 % for cations and from 0.6 to 6.0 % for anions. Recovery of both cations and anions was in the range 90–106 %. CSF samples were only diluted appropriately without other sample pretreatment prior to analysis. Developed sequential method is suitable for fast determination of the studied cations and anions in CSF with total analysis time <15 min.

  相似文献   

19.
Mo H  Zhu L  Xu W 《Journal of separation science》2008,31(13):2470-2475
Separation of inorganic anions in CE is often a challenging task because the electrophoretic mobilities of inorganic anions are comparable to or even greater than the EOF mobility. In this study, we present the use of ionic liquids (ILs) as background electrolytes (BGEs) in CE of inorganic anions. The 1-alkyl-3-methylimidazolium-based ILs as BGEs dynamically coated the capillary wall and induced a reversed EOF. This allowed the anions to comigrate with the EOF and yielded a rapid separation. Increasing the alkyl chain length of the ILs and BGE concentration can significantly improve the separation resolution. With 40 mM 1-butyl-3-methylimidazolium tetrafluoroborate as BGE, good separations of five model anions (Br-, I-, NO2(-), NO3(-), and SCN-) were achieved in a range of buffer pH values. The separation efficiency was as high as 34 600-155 000, and the RSDs of the migration times were less than 0.8% (n = 5).  相似文献   

20.
A silica monolith column (Merck Chromolith, 100 mm x 4.6 mm) has been coated with Dionex AS9-SC latex nanoparticles to convert the column into an anion-exchange stationary phase. For comparison purposes, a reversed-phase silica monolith was also converted into an anion-exchange column by coating with the cationic surfactant didodecyldimethylammonium bromide (DDAB). Separations of common inorganic anions were carried out using 7.5 or 5.0 mM 4-hydroxybenzoic acid at pH 7.0 along with suppressed conductivity detection. Direct comparisons were then made between the two columns in terms of selectivity, efficiency and stability. The latex-coated column was on average 50% more efficient than the DDAB-coated column. A 10% decrease in retention times was observed on the DDAB column over 11 h of continuous eluent flow, while the latex coating exhibited <1% change in retention even after 2.5 months of periodic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号