首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A digraph obtained by replacing each edge of a complete p‐partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete p‐partite digraph, or just a semicomplete multipartite digraph. A semicomplete multipartite digraph with no cycle of length two is a multipartite tournament. In a digraph D, an r‐king is a vertex q such that every vertex in D can be reached from q by a path of length at most r. Strengthening a theorem by K. M. Koh and B. P. Tan (Discr Math 147 (1995), 171–183) on the number of 4‐kings in multipartite tournaments, we characterize semicomplete multipartite digraphs, which have exactly k 4‐kings for every k = 1, 2, 3, 4, 5. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 177‐183, 2000  相似文献   

2.
An outpath of a vertex v in a digraph is a path starting at v such that v dominates the end vertex of the path only if the end vertex also dominates v.First we show that letting D be a strongly connected semicomplete c-partite digraph (c≥3)1 and one of the partite sets of it consists of a single vertex, say v, then D has a c-pancyclic partial ordering from v, which generalizes a result about pancyclicity of multipartite tournaments obtained by Gutin in 1993.Then we prove that letting D be a strongly connected semicomplete c-partite digraph with c≥3 and letting v be a vertex of D,then Dhas a(c-1)-pan-outpath partly ordering from v.This result improves a theorem about outpaths in semicomplete multipartite digraphs obtained by Guo in 1999.  相似文献   

3.
In this paper we introduce a new class of directed graphs called locally semicomplete digraphs. These are defined to be those digraphs for which the following holds: for every vertex x the vertices dominated by x induce a semicomplete digraph and the vertices that dominate x induce a semicomplete digraph. (A digraph is semicomplete if for any two distinct vertices u and ν, there is at least one arc between them.) This class contains the class of semicomplete digraphs, but is much more general. In fact, the class of underlying graphs of the locally semi-complete digraphs is precisely the class of proper circular-arc graphs (see [13], Theorem 3). We show that many of the classic theorems for tournaments have natural analogues for locally semicomplete digraphs. For example, every locally semicomplete digraph has a directed Hamiltonian path and every strong locally semicomplete digraph has a Hamiltonian cycle. We also consider connectivity properties, domination orientability, and algorithmic aspects of locally semicomplete digraphs. Some of the results on connectivity are new, even when restricted to semicomplete digraphs.  相似文献   

4.
B.P. Tan 《Discrete Mathematics》2008,308(12):2564-2570
Reid [Every vertex a king, Discrete Math. 38 (1982) 93-98] showed that a non-trivial tournament H is contained in a tournament whose 2-kings are exactly the vertices of H if and only if H contains no transmitter. Let T be a semicomplete multipartite digraph with no transmitters and let Kr(T) denote the set of r-kings of T. Let Q be the subdigraph of T induced by K4(T). Very recently, Tan [On the kings and kings-of-kings in semicomplete multipartite digraphs, Discrete Math. 290 (2005) 249-258] proved that Q contains no transmitters and gave an example to show that the direct extension of Reid's result to semicomplete multipartite digraphs with 2-kings replaced by 4-kings is not true. In this paper, we (1) characterize all semicomplete digraphs D which are contained in a semicomplete multipartite digraph whose 4-kings are exactly the vertices of D. While it is trivial that K4(Q)⊆K4(T), Tan [On the kings and kings-of-kings in semicomplete multipartite digraphs, Discrete Math. 290 (2005) 249-258] showed that K3(Q)⊆K3(T) and K2(Q)=K2(T). Tan [On the kings and kings-of-kings in semicomplete multipartite digraphs, Discrete Math. 290 (2005) 249-258] also provided an example to show that K3(Q) need not be the same as K3(T) in general and posed the problem: characterize all those semicomplete multipartite digraphs T such that K3(Q)=K3(T). In the course of proving our result (1), we (2) show that K3(Q)=K3(T) for all semicomplete multipartite digraphs T with no transmitters such that Q is a semicomplete digraph.  相似文献   

5.
 An orientation of a digraph D is a spanning subdigraph of D obtained from D by deleting exactly one arc between x and y for every pair xy of vertices such that both x y and y x are in D. Almost minimum diameter orientations of certain semicomplete multipartite and extended digraphs are considered, several generalizations of results on orientations of undirected graphs are obtained, some conjectures are posed. Received: August 31, 2000 Final version received: October 30, 2001 Acknowledgments. Part of this work was done when the first author was visiting the Department of Mathematics, National University of Singapore. The departmental hospitality and financial support are very much appreciated.  相似文献   

6.
A digraph obtained by replacing each edge of a complete m-partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is calied a semicomplete m-partite digraph. We describe results (theorems and algorithms) on directed walks in semicomplete m-partite digraphs, including some recent results concerning tournaments. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
A locally semicomplete digraph is a digraph D=(V,A) satisfying the following condi-tion for every vertex x∈V the D[O(x)] and D[I(x)] are semicomplete digraphs. In this paper,we get some properties of cycles and determine the exponent set of primitive locally semicompleted digraphs.  相似文献   

8.
We prove that every 3-strong semicomplete digraph on at least 5 vertices contains a spanning 2-strong tournament. Our proof is constructive and implies a polynomial algorithm for finding a spanning 2-strong tournament in a given 3-strong semicomplete digraph. We also show that there are infinitely many (2k−2)-strong semicomplete digraphs which contain no spanning k-strong tournament and conjecture that every(2k−1)-strong semicomplete digraph which is not the complete digraph on 2k vertices contains a spanning k-strong tournament.  相似文献   

9.
 Let D be a semicomplete multipartite digraph, with partite sets V 1, V 2,…, V c, such that |V 1|≤|V 2|≤…≤|V c|. Define f(D)=|V(D)|−3|V c|+1 and . We define the irregularity i(D) of D to be max|d +(x)−d (y)| over all vertices x and y of D (possibly x=y). We define the local irregularity i l(D) of D to be max|d +(x)−d (x)| over all vertices x of D and we define the global irregularity of D to be i g(D)=max{d +(x),d (x) : xV(D)}−min{d +(y),d (y) : yV(D)}. In this paper we show that if i g(D)≤g(D) or if i l(D)≤min{f(D), g(D)} then D is Hamiltonian. We furthermore show how this implies a theorem which generalizes two results by Volkmann and solves a stated problem and a conjecture from [6]. Our result also gives support to the conjecture from [6] that all diregular c-partite tournaments (c≥4) are pancyclic, and it is used in [9], which proves this conjecture for all c≥5. Finally we show that our result in some sense is best possible, by giving an infinite class of non-Hamiltonian semicomplete multipartite digraphs, D, with i g(D)=i(D)=i l(D)=g(D)+?≤f(D)+1. Revised: September 17, 1998  相似文献   

10.
A digraph is locally-in semicomplete if for every vertex of D its in-neighborhood induces a semicomplete digraph and it is locally semicomplete if for every vertex of D the in-neighborhood and the out-neighborhood induces a semicomplete digraph. The locally semicomplete digraphs where characterized in 1997 by Bang-Jensen et al. and in 1998 Bang-Jensen and Gutin posed the problem if finding a kernel in a locally-in semicomplete digraph is polynomial or not. A kernel of a digraph is a set of vertices, which is independent and absorbent. A digraph D such that every proper induced subdigraph of D has a kernel is said to be critical kernel imperfect digraph (CKI-digraph) if the digraph D does not have a kernel. A digraph without an induced CKI-digraph as a subdigraph does have a kernel. We characterize the locally semicomplete digraphs, which are CKI. As a consequence of this characterization we conclude that determinate whether a locally semicomplete digraph is a CKI-digraph or not, is polynomial.  相似文献   

11.
The problem of finding necessary and sufficient conditions for a semicomplete multipartite digraph (SMD) to be Hamiltonian, seems to be both very interesting and difficult. Bang-Jensen, Gutin and Huang ( Discrete Math to appear) proved a sufficient condition for a SMD to be Hamiltonian. A strengthening of this condition, shown in this paper, allows us to prove the following three results. We prove that every k-strong SMD with at most k-vertices in each color class is Hamiltonian and every k-strong SMD has a cycle through any set of k vertices. These two statements were stated as conjectures by Volkmann (L. Volkmann, a talk at the second Krakw Conference of Graph Theory (1994)) and Bang-Jensen, Gutin, and Yeo (J. Bang-Jensen, G. Gutin, and A. Yeo, On k-strong and k-cyclic digraphs, submitted), respectively. We also prove that every diregular SMD is Hamiltonian, which was conjectured in a weaker form by Zhang (C.-Q. Zhang, Hamilton paths in multipartite oriented graphs, Ann Discrete Math. 41 (1989), 499–581). © 1997 John Wiley & Sons, Inc.  相似文献   

12.
We consider the problem of finding a minimum cost cycle in a digraph with real-valued costs on the vertices. This problem generalizes the problem of finding a longest cycle and hence is NP-hard for general digraphs. We prove that the problem is solvable in polynomial time for extended semicomplete digraphs and for quasi-transitive digraphs, thereby generalizing a number of previous results on these classes. As a byproduct of our method we develop polynomial algorithms for the following problem: Given a quasi-transitive digraph D with real-valued vertex costs, find, for each j=1,2,…,|V(D)|, j disjoint paths P1,P2,…,Pj such that the total cost of these paths is minimum among all collections of j disjoint paths in D.  相似文献   

13.
If x is a vertex of a digraph D, then we denote by d +(x) and d (x) the outdegree and the indegree of x, respectively. A digraph D is called regular, if there is a number p ∈ ℕ such that d +(x) = d (x) = p for all vertices x of D. A c-partite tournament is an orientation of a complete c-partite graph. There are many results about directed cycles of a given length or of directed cycles with vertices from a given number of partite sets. The idea is now to combine the two properties. In this article, we examine in particular, whether c-partite tournaments with r vertices in each partite set contain a cycle with exactly r − 1 vertices of every partite set. In 1982, Beineke and Little [2] solved this problem for the regular case if c = 2. If c ⩾ 3, then we will show that a regular c-partite tournament with r ⩾ 2 vertices in each partite set contains a cycle with exactly r − 1 vertices from each partite set, with the exception of the case that c = 4 and r = 2.  相似文献   

14.
A semicomplete multipartite or semicomplete cc-partite digraph DD is a biorientation of a cc-partite graph. A semicomplete multipartite digraph DD is called strongly quasi-Hamiltonian-connected, if for any two distinct vertices xx and yy of DD, there is a path PP from xx to yy such that PP contains at least one vertex from each partite set of DD.  相似文献   

15.
A quasi‐kernel in a digraph is an independent set of vertices such that any vertex in the digraph can reach some vertex in the set via a directed path of length at most two. Chvátal and Lovász proved that every digraph has a quasi‐kernel. Recently, Gutin et al. raised the question of which digraphs have a pair of disjoint quasi‐kernels. Clearly, a digraph has a pair of disjoint quasi‐kernels cannot contain sinks, that is, vertices of outdegree zero, as each such vertex is necessarily included in a quasi‐kernel. However, there exist digraphs which contain neither sinks nor a pair of disjoint quasi‐kernels. Thus, containing no sinks is not sufficient in general for a digraph to have a pair of disjoint quasi‐kernels. In contrast, we prove that, for several classes of digraphs, the condition of containing no sinks guarantees the existence of a pair of disjoint quasi‐kernels. The classes contain semicomplete multipartite, quasi‐transitive, and locally semicomplete digraphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:251‐260, 2008  相似文献   

16.
 A well-known and essential result due to Roy ([4], 1967) and independently to Gallai ([3], 1968) is that if D is a digraph with chromatic number χ(D), then D contains a directed path of at least χ(D) vertices. We generalize this result by showing that if ψ(D) is the minimum value of the number of the vertices in a longest directed path starting from a vertex that is connected to every vertex of D, then χ(D) ≤ψ(D). For graphs, we give a positive answer to the following question of Fajtlowicz: if G is a graph with chromatic number χ(G), then for any proper coloring of G of χ(G) colors and for any vertex vV(G), there is a path P starting at v which represents all χ(G) colors. Received: May 20, 1999 Final version received: December 24, 1999  相似文献   

17.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism of D to H if uvA(D) implies f(u)f(v)∈A(H). For a fixed digraph H, the homomorphism problem is to decide whether an input digraph D admits a homomorphism to H or not, and is denoted as HOM(H).An optimization version of the homomorphism problem was motivated by a real-world problem in defence logistics and was introduced in Gutin, Rafiey, Yeo and Tso (2006) [13]. If each vertex uV(D) is associated with costs ci(u),iV(H), then the cost of the homomorphism f is ∑uV(D)cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem forH and denote it as MinHOM(H). The problem is to decide, for an input graph D with costs ci(u),uV(D),iV(H), whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost.Although a complete dichotomy classification of the complexity of MinHOM(H) for a digraph H remains an unsolved problem, complete dichotomy classifications for MinHOM(H) were proved when H is a semicomplete digraph Gutin, Rafiey and Yeo (2006) [10], and a semicomplete multipartite digraph Gutin, Rafiey and Yeo (2008) [12] and [11]. In these studies, it is assumed that the digraph H is loopless. In this paper, we present a full dichotomy classification for semicomplete digraphs with possible loops, which solves a problem in Gutin and Kim (2008) [9].  相似文献   

18.
On Hamiltonian Powers of Digraphs   总被引:2,自引:0,他引:2  
 For a strongly connected digraph D, the k-th power D k of D is the digraph with the same set of vertices, a vertex x being joined to a vertex y in D k if the directed distance from x to y in D is less than or equal to k. It follows from a result of Ghouila-Houri that for every digraph D on n vertices and for every kn/2, D k is hamiltonian. In the paper we characterize these digraphs D of odd order whose (⌈n/2 ⌉−1)-th power is hamiltonian. Revised: June 13, 1997  相似文献   

19.
In this paper, D=(V(D),A(D)) denotes a loopless directed graph (digraph) with at most one arc from u to v for every pair of vertices u and v of V(D). Given a digraph D, we say that D is 3-quasi-transitive if, whenever uvwz in D, then u and z are adjacent or u=z. In Bang-Jensen (2004) [3], Bang-Jensen introduced 3-quasi-transitive digraphs and claimed that the only strong 3-quasi-transitive digraphs are the strong semicomplete digraphs and strong semicomplete bipartite digraphs. In this paper, we exhibit a family of strong 3-quasi-transitive digraphs distinct from strong semicomplete digraphs and strong semicomplete bipartite digraphs and provide a complete characterization of strong 3-quasi-transitive digraphs.  相似文献   

20.
A digraph is arc-locally in-semicomplete if for any pair of adjacent vertices x,y, every in-neighbor of x and every in-neighbor of y either are adjacent or are the same vertex. In this paper, we study the structure of strong arc-locally in-semicomplete digraphs and prove that a strong arc-locally in-semicomplete digraph is either arc-locally semicomplete or in a special class of digraphs. Using this structural characterization, we show that a 2-strong arc-locally in-semicomplete digraph is arc-locally semicomplete and a conjecture of Bang-Jensen is true.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号