首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a system of M(≥2) singularly perturbed equations of reaction-diffusion type coupled through the reaction term. A high order Schwarz domain decomposition method is developed to solve the system numerically. The method splits the original domain into three overlapping subdomains. On two boundary layer subdomains we use a compact fourth order difference scheme on a uniform mesh while on the interior subdomain we use a hybrid scheme on a uniform mesh. We prove that the method is almost fourth order ε-uniformly convergent. Furthermore, we prove that when ε is small, one iteration is sufficient to get almost fourth order ε-uniform convergence. Numerical experiments are performed to support the theoretical results.  相似文献   

2.
This paper deals with the numerical approximation of the solution of 1D parabolic singularly perturbed problems of reaction-diffusion type. The numerical method combines the standard implicit Euler method on a uniform mesh to discretize in time and a HODIE compact fourth order finite difference scheme to discretize in space, which is defined on a priori special meshes condensing the grid points in the boundary layer regions. The method is uniformly convergent having first order in time and almost fourth order in space. The analysis of the uniform convergence is made in two steps, splitting the contribution to the error from the time and the space discretization. Although this idea has been previously used to prove the uniform convergence for parabolic singularly perturbed problems, here the proof is based on a new study of the asymptotic behavior of the exact solution of the semidiscrete problems obtained after the time discretization by using the Euler method. Some numerical results are given corroborating in practice the theoretical results.  相似文献   

3.
Using the coupled approach, we formulate a fourth order finite difference scheme for the solution of the Dirichlet biharmonic problem on the unit square. On an N × N uniform partition of the square the scheme is solved at a cost O(N 2 log2 N)+m8N 2 using fast Fourier transforms and m iterations of the preconditioned conjugate gradient method. Numerical tests confirm the fourth order accuracy of the scheme at the partition nodes with m proportional to log2 N.  相似文献   

4.
In this paper, a compact finite difference method is proposed for the solution of time fractional advection-dispersion equation which appears extensively in fluid dynamics. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of order O(τ 2???α ), 0?<?α?<?1, and spatial derivatives are replaced with a fourth order compact finite difference scheme. We will prove the unconditional stability and solvability of proposed scheme. Also we show that the method is convergence with convergence order O(τ 2???α ?+?h 4). Numerical examples confirm the theoretical results and high accuracy of proposed scheme.  相似文献   

5.
In this article an error bound is derived for a piecewise linear finite element approximation of an enthalpy formulation of the Stefan problem; we have analyzed a semidiscrete Galerkin approximation and completely discrete scheme based on the backward Euler method and a linearized scheme is given and its convergence is also proved. A second‐order error estimates are derived for the Crank‐Nicolson Galerkin method. In the second part, a new class of finite difference schemes is proposed. Our approach is to introduce a new variable and transform the given equation into an equivalent system of equations. Then, we prove that the difference scheme is second order convergent. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

6.
Abstract   In this paper, we study the high-order upwind finite difference method for steady convection-diffusion problems. Based on the conservative convection-diffusion equation, a high-order upwind finite difference scheme on nonuniform rectangular partition for convection-diffusion equation is proposed. The proposed scheme is in conversation form, satisfies maximum value principle and has second-order error estimates in discrete H 1 norm. To illustrate our conclusion, several numerical examples are given. Supported by the Research Fund for Doctoral Program of High Education of China State Education Commission.  相似文献   

7.
In this paper, we propose an effective spectral method based on dimension reduction scheme for fourth order problems in polar geometric domains. First, the original problem is decomposed into a series of one‐dimensional fourth order problems by polar coordinate transformation and the orthogonal properties of Fourier basis function. Then the weak form and the corresponding discrete scheme of each one‐dimensional fourth order problem are derived by introducing polar conditions and appropriate weighted Sobolev spaces. In addition, we define the projection operators in the weighted Sobolev space and give its approximation properties, and further prove the error estimation of each one‐dimensional fourth order problem. Finally, we provide some numerical examples, and the numerical results show the effectiveness of our algorithm and the correctness of the theoretical results.  相似文献   

8.
In this paper, a cubic superconvergent finite volume element method based on optimal stress points is presented for one-dimensional elliptic and parabolic equations. For elliptic problem, it is proved that the method has optimal third order accuracy with respect to H1 norm and fourth order accuracy with respect to L2 norm. We also obtain that the scheme has fourth order superconvergence for derivatives at optimal stress points. For parabolic problem, the scheme is given and error estimate is obtained with respect to L2 norm. Finally, numerical examples are provided to show the effectiveness of the method.  相似文献   

9.
An efficient three-level scheme for parabolic equations in cylindrical coordinates is constructed in a region with a small hole. No axial symmetry is assumed. The convergence rate of the scheme is estimated under minimum requirements on the initial data. The estimates are uniform with respect to a small parameter—the inner diameter of the region. The order of convergence is τ + h 2, τ1/2 + h, τ + h, depending on the smoothness of the data.  相似文献   

10.
We propose a 9‐point fourth‐order finite difference scheme for 2D elliptic problems with a mixed derivative and variable coefficients. The same approach is extended to derive a class of two‐level high‐order compact schemes with weighted time discretization for solving 2D parabolic problems with a mixed derivative. The schemes are fourth‐order accurate in space and second‐ or lower‐order accurate in time depending on the choice of a weighted average parameter μ. Unconditional stability is proved for 0.5 ≤ μ ≤ 1, and numerical experiments supporting our theoretical analysis and confirming the high‐order accuracy of the schemes are presented. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 366–378, 2007  相似文献   

11.
A low order anisotropic nonconforming rectangular finite element method for the convection-diffusion problem with a modified characteristic finite element scheme is studied in this paper. The O(h2) order error estimate in L2-norm with respect to the space, one order higher than the expanded characteristic-mixed finite element scheme with order O(h), and the same as the conforming case for a modified characteristic finite element scheme under regular meshes, is obtained by use of some distinct properties of the interpolation operator and the mean value technique, instead of the so-called elliptic projection, which is an indispensable tool in the convergence analysis of the previous literature. Lastly, some numerical results of the element are provided to verify our theoretical analysis.  相似文献   

12.
We study a new class of finite elements so‐called composite finite elements (CFEs), introduced earlier by Hackbusch and Sauter, Numer. Math., 1997; 75:447‐472, for the approximation of nonlinear parabolic equation in a nonconvex polygonal domain. A two‐scale CFE discretization is used for the space discretizations, where the coarse‐scale grid discretized the domain at an appropriate distance from the boundary and the fine‐scale grid is used to resolve the boundary. A continuous, piecewise linear CFE space is employed for the spatially semidiscrete finite element approximation and the temporal discretizations is based on modified linearized backward Euler scheme. We derive almost optimal‐order convergence in space and optimal order in time for the CFE method in the L(L2) norm. Numerical experiment is carried out for an L‐shaped domain to illustrate our theoretical findings.  相似文献   

13.
We consider the mixed covolume method combining with the expanded mixed element for a system of first‐order partial differential equations resulting from the mixed formulation of a general self‐adjoint elliptic problem with a full diffusion tensor. The system can be used to model the transport of a contaminant carried by a flow in porous media. We use the lowest order Raviart‐Thomas mixed element space. We show the first‐order error estimate for the approximate solution in L2 norm. We show the superconvergence both for pressure and velocity in certain discrete norms. We also get a finite difference scheme by using proper approximate integration formulas. Finally we give some numerical examples. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

14.
The Sivashinsky equation is a nonlinear evolutionary equation of fourth order in space. In this paper we have analyzed a semidiscrete finite element method and completely discrete scheme based on the backward Euler method and Crank–Nicolson–Galerkin scheme. A linearized backward Euler method have been developed and error bounds are derived for an L2 projection.  相似文献   

15.
In this article, a new compact alternating direction implicit finite difference scheme is derived for solving a class of 3‐D nonlinear evolution equations. By the discrete energy method, it is shown that the new difference scheme has good stability and can attain second‐order accuracy in time and fourth‐order accuracy in space with respect to the discrete H1 ‐norm. A Richardson extrapolation algorithm is applied to achieve fourth‐order accuracy in temporal dimension. Numerical experiments illustrate the accuracy and efficiency of the extrapolation algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

16.
A novel three level linearized difference scheme is proposed for the semilinear parabolic equation with nonlinear absorbing boundary conditions. The solution of this problem will blow up in finite time. Hence this difference scheme is coupled with an adaptive time step size, i.e., when the solution tends to infinity, the time step size will be smaller and smaller. Furthermore, the solvability, stability and convergence of the difference scheme are proved by the energy method. Numerical experiments are also given to demonstrate the theoretical second order convergence both in time and in space in L-norm.  相似文献   

17.
A method to derive the continuous nonpoint symmetries of ordinary difference equations (OΔE) of order two and higher is presented. A partial classification of second and fourth order difference equations that admit nonpoint symmetries both rational and polynomial forms which are quadratic in each variable is reported. Also, exploiting the obtained symmetries, it is shown how to construct integrals of motion or invariant for each of the considered equations. The question of integrability of the fourth order difference equations possessing the above type of nonpoint symmetries has also been briefly discussed.  相似文献   

18.
19.
This paper is devoted to a newly developed weak Galerkin finite element method with the stabilization term for a linear fourth order parabolic equation, where weakly defined Laplacian operator over discontinuous functions is introduced. Priori estimates are developed and analyzed in L2 and an H2 type norm for both semi‐discrete and fully discrete schemes. And finally, numerical examples are provided to confirm the theoretical results.  相似文献   

20.
Modified High-order Upwind Method for Convection Diffusion Equation   总被引:2,自引:0,他引:2  
Abstract In this paper, we study the high-order upwind finite difference method for steady convection-diffusionproblems. Based on the conservative convection-diffusion equation, a high-order upwind finite difference schemeon nonuniform rectangular partition for convection-diffusion equation is proposed. The proposed scheme is inconversation form, satisfies maximum value principle and has second-order error estimates in discrete H~1 norm.To illustrate our conclusion, several numerical examples are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号