首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic promiscuity of E. coli alkaline phosphatase (AP) and many other enzymes provides a unique opportunity to dissect the origin of enzymatic rate enhancements via a comparative approach. Here, we use kinetic isotope effects (KIEs) to explore the origin of the 109-fold greater catalytic proficiency by AP for phosphate monoester hydrolysis relative to sulfate monoester hydrolysis. The primary 18O KIEs for the leaving group oxygen atoms in the AP-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) and p-nitrophenylsulfate (pNPS) decrease relative to the values observed for nonenzymatic hydrolysis reactions. Prior linear free energy relationship results suggest that the transition states for AP-catalyzed reactions of phosphate and sulfate esters are "loose" and indistinguishable from that in solution, suggesting that the decreased primary KIEs do not reflect a change in the nature of the transition state but rather a strong interaction of the leaving group oxygen atom with an active site Zn2+ ion. Furthermore, the primary KIEs for the two reactions are identical within error, suggesting that the differential catalysis of these reactions cannot be attributed to differential stabilization of the leaving group. In contrast, AP perturbs the KIE for the nonbridging oxygen atoms in the reaction of pNPP but not pNPS, suggesting a differential interaction with the transferred group in the transition state. These and prior results are consistent with a strong electrostatic interaction between the active site bimetallo Zn2+ cluster and one of the nonbridging oxygen atoms on the transferred group. We suggest that the lower charge density of this oxygen atom on a transferred sulfuryl group accounts for a large fraction of the decreased stabilization of the transition state for its reaction relative to phosphoryl transfer.  相似文献   

2.
Phosphorothioate esters are sometimes used as surrogates for phosphate ester substrates in studies of enzymatic phosphoryl transfer reactions. To gain better understanding of the comparative inherent chemistry of the two types of esters, we have measured equilibrium and kinetic isotope effects for several phosphorothioate esters of p-nitrophenol (pNPPT) and compared the results with data from phosphate esters. The primary (18)O isotope effect at the phenolic group ((18)k(bridge)), the secondary nitrogen-15 isotope effect ((15)k) in the nitro group, and (for the monoester and diester) the secondary oxygen-18 isotope effect ((18)k(nonbridge)) in the phosphoryl oxygens were measured. The equilibrium isotope effect (EIE) (18)k(nonbridge) for the deprotonation of the monoanion of pNPPT is 1.015 +/- 0.002, very similar to values previously reported for phosphate monoesters. The EIEs for complexation of Zn(2+) and Cd(2+) with the dianion pNPPT(2-) were both unity. The mechanism of the aqueous hydrolysis of the monoanion and dianion of pNPPT, the diester ethyl pNPPT, and the triester dimethyl pNPPT was probed using heavy atom kinetic isotope effects. The results were compared with the data reported for analogous phosphate monoester, diester, and triester reactions. The results suggest that leaving group bond fission in the transition state of reactions of the monoester pNPPT is more advanced than for its phosphate counterpart pNPP, while alkaline hydrolysis of the phosphorothioate diester and triester exhibits somewhat less advanced bond fission than that of their phosphate ester counterparts.  相似文献   

3.
Although aryl phosphates have been the subject of numerous experimental studies, far less data bearing on the mechanism and transition states for alkyl phosphate reactions have been presented. Except for esters with very good leaving groups such as 2,4-dinitrophenol, the monoanion of phosphate esters is more reactive than the dianion. Several mechanisms have been proposed for the hydrolysis of the monoanion species. (18)O kinetic isotope effects in the nonbridging oxygen atoms and in the P-O(R) ester bond, and solvent deuterium isotope effects, have been measured for the hydrolysis of m-nitrobenzyl phosphate. The results rule out a proposed mechanism in which the phosphoryl group deprotonates water and then undergoes attack by hydroxide. The results are most consistent with a preequilibrium proton transfer from the phosphoryl group to the ester oxygen atom, followed by rate-limiting P-O bond fission, as originally proposed by Kirby and co-workers in 1967. The transition state for m-nitrobenzyl phosphate (leaving group pK(a) 14.9) exhibits much less P-O bond fission than the reaction of the more labile p-nitrophenyl phosphate (leaving group pK(a) = 7.14). This seemingly anti-Hammond behavior results from weakening of the P-O(R) ester bond resulting from protonation, an effect which calculations have shown is much more pronounced for aryl phosphates than for alkyl ones.  相似文献   

4.
Kinetic isotope effects in the nucleophile and leaving group were obtained for the reaction of p-nitrophenyl phosphate monoester coordinated to a dinuclear Co(III) complex. The metal complex of the p-nitrophenyl phosphate monoester was found to hydrolyze by a single-step concerted mechanism, with significant nucleophilic participation in the transition state. By contrast, the hydrolysis of uncomplexed p-nitrophenyl phosphate occurs by a very loose transition state with little bond formation to the nucleophile. Previously, the metal complex of the diester methyl-p-nitrophenyl phosphate was found to hydrolyze via a two-step addition-elimination mechanism, in contrast to the concerted hydrolysis mechanism followed by uncomplexed diesters with the p-nitrophenolate leaving group. These results show that coordination to a metal complex can significantly alter the mechanism of phosphoryl transfer.  相似文献   

5.
Both phosphoryl and sulfuryl transfers are ubiquitous in biology, being involved in a wide range of processes, ranging from cell division to apoptosis. Additionally, it is becoming increasingly clear that enzymes that can catalyze phosphoryl transfer can often cross-catalyze sulfuryl transfer (and vice versa). However, while there have been extensive experimental and theoretical studies performed on phosphoryl transfer, the body of available research on sulfuryl transfer is comparatively much smaller. The present work presents a direct theoretical comparison of p-nitrophenyl phosphate and sulfate monoester hydrolysis, both of which are considered prototype systems for probing phosphoryl and sulfuryl transfer, respectively. Specifically, free energy surfaces have been generated using density functional theory, by initial geometry optimization in PCM using the 6-31+G* basis set and the B3LYP density functional, followed by single-point calculations using the larger 6-311+G** basis set and the COSMO continuum model. The resulting surfaces have been then used to identify the relevant transition states, either by further unconstrained geometry optimization or from the surface itself where possible. Additionally, configurational entropies were evaluated using a combination of the quasiharmonic approximation and the restraint release approach and added to the calculated activation barriers as a correction. Finally, the overall activation entropy was estimated by approximating the solvent contribution to the total activation entropy using the Langevin dipoles solvation model. We have reproduced both the experimentally observed activation barriers and the observed trend in the activation entropies with reasonable accuracy, as well as providing a comparison of calculated and observed (15)N and (18)O kinetic isotope effects. We demonstrate that, counterintuitively, the hydrolysis of the p-nitrophenyl sulfate proceeds through a more expansive pathway than its phosphate analogue. Additionally, we show that the solvation effects upon moving from the ground state to the transition state are quite different for both reactions, suggesting that the enzymes that catalyze these reactions would need active sites with quite different electrostatic preorganization for the efficient catalysis of either reaction (despite which many enzymes can catalyze both phosphoryl and sulfuryl transfer). We believe that such a comparative study is an important foundation for understanding the molecular basis for phosphate-sulfate cross-promiscuity within members of the alkaline phosphatase superfamily.  相似文献   

6.
Information about the transition states of metal-catalyzed hydrolysis reactions of model phosphate compounds has been obtained through determination of isotope effects (IEs) on the hydrolysis reactions. Metal complexation has been found to significantly alter the transition state of the reaction from the alkaline hydrolysis reaction, and the transition state is quite dependent on the particular metal ion used. For the diester, ethyl p-nitrophenyl phosphate, the nonbridge 18O effect for the hydrolysis reactions catalyzed by Co(III) 1,5,9-triazacyclononane and Eu(III) were 1.0006 and 1.0016, respectively, indicative of a slightly associative transition state and little net change in bonding to the nonbridge oxygen. The reaction catalyzed by Zn(II) 1,4,7,10-tetraazacyclododecane had an 18O nonbridge IE of 1.0108, showing the reaction differs significantly from the reaction of the noncomplexed diester and resembles the reactions of triesters. Reaction with Co(III) 1,4,7,10-tetraazacyclododecane showed an inverse effect of 0.9948 reflecting the effects of bonding of the diester to the Co(III). Lanthanide-catalyzed hydrolysis has been observed to have unusually large 15N effects. To further investigate this effect, the 15N effect on the reaction catalyzed by Ce(IV) bis-Tris propane solutions at pH 8 was determined to be 1.0012. The 15N effects were also measured for the reaction of the monoester p-nitrophenyl phosphate by Ce(IV) bis-Tris propane (1.0014) and Eu(III) bis-Tris propane (1.0012). These smaller effects at pH 8 indicate that a smaller negative charge develops on the nitrogen during the hydrolysis reaction.  相似文献   

7.
[reaction: see text] The transition structures and alpha-carbon 12C/13C kinetic isotope effects for 22 S(N)2 reactions between methyl chloride and a wide variety of nucleophiles have been calculated using the B1LYP/aug-cc-pVDZ level of theory. Anionic, neutral, and radical anion nucleophiles were used to give a wide range of S(N)2 transition states so the relationship between the magnitude of the alpha-carbon kinetic isotope effect and transition-state structure could be determined. The results suggest that the alpha-carbon 12C/13C kinetic isotope effects for S(N)2 reactions will be large (near the experimental maximum) and that the curve relating the magnitude of the KIE to the percent transfer of the alpha-carbon from the nucleophile to the leaving group in the transition state has a broad maximum. This means very similar KIEs will be found for early, symmetric, and late transition states and that one cannot use the magnitude of these KIEs to estimate transition-state structure.  相似文献   

8.
Phosphoryl transfer reactions are ubiquitous in biology and the understanding of the mechanisms whereby these reactions are catalyzed by protein and RNA enzymes is central to reveal design principles for new therapeutics. Two of the most powerful experimental probes of chemical mechanism involve the analysis of linear free energy relations (LFERs) and the measurement of kinetic isotope effects (KIEs). These experimental data report directly on differences in bonding between the ground state and the rate‐controlling transition state, which is the most critical point along the reaction free energy pathway. However, interpretation of LFER and KIE data in terms of transition‐state structure and bonding optimally requires the use of theoretical models. In this work, we apply density‐functional calculations to determine KIEs for a series of phosphoryl transfer reactions of direct relevance to the 2′‐O‐transphosphorylation that leads to cleavage of the phosphodiester backbone of RNA. We first examine a well‐studied series of phosphate and phosphorothioate mono‐, di‐ and triesters that are useful as mechanistic probes and for which KIEs have been measured. Close agreement is demonstrated between the calculated and measured KIEs, establishing the reliability of our quantum model calculations. Next, we examine a series of RNA transesterification model reactions with a wide range of leaving groups in order to provide a direct connection between observed Brønsted coefficients and KIEs with the structure and bonding in the transition state. These relations can be used for prediction or to aid in the interpretation of experimental data for similar non‐enzymatic and enzymatic reactions. Finally, we apply these relations to RNA phosphoryl transfer catalyzed by ribonuclease A, and demonstrate the reaction coordinate–KIE correlation is reasonably preserved. A prediction of the secondary deuterium KIE in this reaction is also provided. These results demonstrate the utility of building up knowledge of mechanism through the systematic study of model systems to provide insight into more complex biological systems such as phosphoryl transfer enzymes and ribozymes.  相似文献   

9.
Isotope effects in the nucleophile and in the leaving group were measured to gain information about the mechanism and transition state of the hydrolysis of methyl p-nitrophenyl phosphate complexed to a dinuclear cobalt complex. The complexed diester undergoes hydrolysis about 1011 times faster than the corresponding uncomplexed diester. The kinetic isotope effects indicate that this rate acceleration is accompanied by a change in mechanism. A large inverse 18O isotope effect in the bridging hydroxide nucleophile (0.937 +/- 0.002) suggests that nucleophilic attack occurs before the rate-determining step. Large isotope effects in the nitrophenyl leaving group (18Olg = 1.029 +/- 0.002, 15N = 1.0026 +/- 0.0002) indicate significant fission of the P-O ester bond in the transition state of the rate-determining step. The data indicate that in contrast to uncomplexed diesters, which undergo hydrolysis by a concerted mechanism, the reaction of the complexed diester likely proceeds via an addition-elimination mechanism. The rate-limiting step is expulsion of the p-nitrophenyl leaving group from the intermediate, which proceeds by a late transition state with extensive bond fission to the leaving group. This represents a substantial change in mechanism from the hydrolysis of uncomplexed aryl phosphate diesters.  相似文献   

10.
In this communication, we report the first determination of 34S kinetic isotope effects (KIEs) for the hydrolysis of sulfate monoesters. The method involves the conversion of the inorganic sulfate, acquired at partial extent of reaction, to SO2, followed by isotope ratio determination by mass spectrometry. The KIEs determined for p-nitrophenyl sulfate and p-acetylphenyl sulfate are 1.0154 (+/-0.0002) and 1.0172 (+/-0.0003), respectively. These results, together with previous peripheral 18O KIE values, are inconsistent with an associative mechanism. The isotope effect method we report should also prove useful for studying the mechanism of other sulfuryl group transfers, including sulfatase and sulfotransferase reactions, as well as sulfate hydrolyses under other conditions.  相似文献   

11.
The hydrolysis rates of the dianions of phosphate and phosphorothioate esters are substantially accelerated by the addition of polar aprotic solvents such as DMSO and acetonitrile. The activation barrier DeltaG is smaller due to a lower enthalpy of activation. The enthalpy of transfer of p-nitrophenyl phosphate (pNPP) and p-nitrophenyl phosphorothioate (pNPPT), from water to 0.6 (mol) aq DMSO (60 mol % water in DMSO) were measured calorimetrically. The enthalpies of activation for the hydrolysis reactions in the two solvents permitted the calculation of the enthalpy of transfer of the transition states. This transfer is thermodynamically favorable for both the reactants and the transition states but is more favorable for the transition states. In the case of pNPP, the enthalpy of transfer of the reactant is -23.9 kcal/mol, compared to -28.3 for the transition state. The difference is greater for pNPPT, where the enthalpy of transfer of the reactant is -23.2 kcal/mol and that for the transition state is -35.3. The results show that the reduced enthalpies of activation in both hydrolysis reactions arise not from a destabilization of the reactants in the mixed solvent, but from the fact that the enthalpy of transfer of the transition states to the mixed solvent is significantly more negative than the enthalpy of transfer of the reactants.  相似文献   

12.
Pentavalent organo-vanadates have been put forth as transition state analogues for a variety of phosphoryl transfer reactions. In particular, uridine 2',3'-cyclic vanadate (U>v) has been proposed to resemble the transition state during catalysis by ribonuclease A (RNase A). Here, this hypothesis is tested. Lys41 of RNase A is known to donate a hydrogen bond to a nonbridging phosphoryl oxygen in the transition state during catalysis. Site-directed mutagenesis and semisynthesis were used to create enzymes with natural and nonnatural amino acid residues at position 41. These variants differ by 10(5)-fold in their k(cat)/K(m) values for catalysis, but <40-fold in their K(i) values for inhibition of catalysis by U>v. Plots of logK(i) vs log(K(m)/k(cat)) for three distinct substrates [poly(cytidylic acid), uridine 3'-(p-nitrophenyl phosphate), and cytidine 2',3'-cyclic phosphate] have slopes that range from 0.25 and 0.36. These plots would have a slope of unity if U>v were a perfect transition state analogue. Values of K(i) for U>v correlate weakly with the equilibrium dissociation constant for the enzymic complexes with substrate or product, indicating that U>v bears some resemblance to the substrate and product as well as the transition state. Thus, U>v is a transition state analogue for RNase A, but only a marginal one. This finding indicates that a pentavalent organo-vanadate cannot necessarily be the basis for a rigorous analysis of the transition state for a phosphoryl transfer reaction.  相似文献   

13.
Nucleophile (11)C/ (14)C [ k (11)/ k (14)] and secondary alpha-deuterium [( k H/ k D) alpha] kinetic isotope effects (KIEs) were measured for the S N2 reactions between tetrabutylammonium cyanide and ethyl iodide, bromide, chloride, and tosylate in anhydrous DMSO at 20 degrees C to determine whether these isotope effects can be used to determine the structure of S N2 transition states. Interpreting the experimental KIEs in the usual fashion (i.e., that a smaller nucleophile KIE indicates the Nu-C alpha transition state bond is shorter and a smaller ( k H/ k D) alpha is found when the Nu-LG distance in the transition state is shorter) suggests that the transition state is tighter with a slightly shorter NC-C alpha bond and a much shorter C alpha-LG bond when the substrate has a poorer halogen leaving group. Theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion. The results show that the experimental nucleophile (11)C/ (14)C KIEs can be used to determine transition-state structure in different reactions and that the usual method of interpreting these KIEs is correct. The magnitude of the experimental secondary alpha-deuterium KIE is related to the nucleophile-leaving group distance in the S N2 transition state ( R TS) for reactions with a halogen leaving group. Unfortunately, the calculated and experimental ( k H/ k D) alpha's change oppositely with leaving group ability. However, the calculated ( k H/ k D) alpha's duplicate both the trend in the KIE with leaving group ability and the magnitude of the ( k H/ k D) alpha's for the ethyl halide reactions when different scale factors are used for the high and the low energy vibrations. This suggests it is critical that different scaling factors for the low and high energy vibrations be used if one wishes to duplicate experimental ( k H/ k D) alpha's. Finally, neither the experimental nor the theoretical secondary alpha-deuterium KIEs for the ethyl tosylate reaction fit the trend found for the reactions with a halogen leaving group. This presumably is found because of the bulky (sterically hindered) leaving group in the tosylate reaction. From every prospective, the tosylate reaction is too different from the halogen reactions to be compared.  相似文献   

14.
The chlorine leaving group kinetic isotope effects (KIEs) for the S(N)2 reactions between methyl chloride and a wide range of anionic, neutral, and radical anion nucleophiles were calculated in the gas phase and, in several cases, using a continuum solvent model. In contrast to the expected linear dependence of the chlorine KIEs on the C(alpha)-Cl bond order in the transition state, the KIEs fell in a very small range (1.0056-1.0091), even though the C(alpha)-Cl transition state bond orders varied widely from approximately 0.32 to 0.78, a range from reactant-like to very product-like. This renders chlorine KIEs, and possibly other leaving-group KIEs, less useful for studies of reaction mechanisms than commonly assumed. A partial explanation for this unexpected relationship between the C(alpha)-Cl transition state bond order and the magnitude of the chlorine KIE is presented.  相似文献   

15.
The effects of sulfur substitution on the reactions of hydroxyalkyl phosphate esters are examined. These compounds are models for the intramolecular phosphoryl transfer reaction involved in the cleavage of the internucleotide bond in RNA. The models studied here lack the ribose ring and their conformational flexibility results in greater stability and the availability of different reaction pathways. Sulfur in the nucleophilic position shows no nucleophilic reaction at phosphorus, instead rapidly attacking at the beta carbon atom, forming thiirane with departure of a phosphomonoester. Sulfur substitution at either of the two bridging positions leads to cleavage of the diester via formation of a cyclic intermediate, but with significant rate acceleration when compared to the oxygen analogues. The bridge-substituted models react substantially slower than the analogous ribose compounds with sulfur substitution at comparable positions. Kinetic isotope effects reveal significant differences in the transition state depending on which bridging position sulfur occupies. When sulfur is in the scissile bridging position, a highly associative transition state is indicated, with a largely formed bond to the nucleophile and the scissile P-S bond is little changed. When sulfur occupies the other bridging position, the isotope effects imply a very early transition state in a concerted reaction.  相似文献   

16.
The second-order rate constants for the hydrolysis of nitrophenyl esters catalysed by a number of folded designed polypeptides have been determined, and 1900-fold rate enhancements over those of the 4-methylimidazole-catalysed reactions have been observed. The rate enhancements are much larger than those expected from the pKa depression of the nucleophilic His residues alone. Kinetic solvent isotope effects were observed at pH values lower than the pKa values of the leaving groups and suggests that general-acid catalysis contributes in the pH range where the leaving group is predominantly protonated. In contrast, no isotope effects were observed at pH values above the pKa of the leaving group. A Hammett rho value of 1.4 has been determined for the peptide-catalysed hydrolysis reaction by variation of the substituents of the leaving phenol. The corresponding values for the imidazole-catalysed reaction is 0.8 and for phenol dissociation is 2.2. There is therefore, very approximately, half a negative charge localised on the phenolate oxygen in the transition state in agreement with the conclusion that transition-state hydrogen-bond formation may contribute to the observed catalysis. The elucidation at a molecular level of the principles that control cooperativity in the biocatalysed ester-hydrolysis reaction represents the first step towards a level of understanding of the concept of cooperativity that may eventually allow us to design tailor-made enzymes for chemical reactions not catalysed by nature.  相似文献   

17.
The kinetics of 4-nitrochlorobenzene reactions with substituted phenolates in the medium of N,N-dimethylacetamide was studied. The BrØnsted relation is fulfilled by substituted potassium phenolates: the nucleophilicity of phenolates increases with an increase in their basicity. The rate-limiting step in the reactions of 4-nitrochlorobenzene with substituted phenolates and potassium resorcinate is changed from the phenoxide anion to the phenoxide dianion. In the latter case, electron transfer from the resorcinate dianion with the generation of radical species can be responsible for the reaction rate.  相似文献   

18.
Nitrogen, deuterium, halogen, and carbon kinetic isotope effects have been modeled for the Menshutkin reaction between methyl halides and substituted N,N-dimethylaniline at the HF/6-31G(d) level of theory augmented by the C-PCM continuum solvent model for several solvents. Systematic changes in geometries of the transition states and Gibbs free energies of activation have been found with phenyl ring substituents, solvent, and the leaving group. Kinetic isotope effects also change systematically; however, these changes are predicted to be small, inside the usual precision of the experimental measurements. On the contrary, no correlation has been found between the kinetic isotope effects and the Hammett constants for para substituents. Thus opposite to previous assumptions, our results indicate that kinetic isotope effects on the Menshutkin reaction cannot be used to predict the position of the transition state on the reaction coordinate.  相似文献   

19.
Chlorine leaving group k(35)/k(37), nucleophile carbon k(11)/k(14), and secondary alpha-deuterium [(kH/kD)alpha] kinetic isotope effects (KIEs) have been measured for the SN2 reactions between para-substituted benzyl chlorides and tetrabutylammonium cyanide in tetrahydrofuran at 20 degrees C to determine whether these isotope effects can be used to determine the substituent effect on the structure of the transition state. The secondary alpha-deuterium KIEs indicate that the transition states for these reactions are unsymmetric. The theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion; i.e., they suggest that the transition states for these reactions are unsymmetric with a long NC-C(alpha) and reasonably short C(alpha)-Cl bonds. The chlorine isotope effects suggest that these KIEs can be used to determine the substituent effects on transition state structure with the KIE decreasing when a more electron-withdrawing para-substituent is present. This conclusion is supported by theoretical calculations. The nucleophile carbon k(11)/k(14) KIEs for these reactions, however, do not change significantly with substituent and, therefore, do not appear to be useful for determining how the NC-C(alpha) transition-state bond changes with substituent. The theoretical calculations indicate that the NC-C(alpha) bond also shortens as a more electron-withdrawing substituent is placed on the benzene ring of the substrate but that the changes in the NC-C(alpha) transition-state bond with substituent are very small and may not be measurable. The results also show that using leaving group and nucleophile carbon KIEs to determine the substituent effect on transition-state structure is more complicated than previously thought. The implication of using both chlorine leaving group and nucleophile carbon KIEs to determine the substituent effect on transition-state structure is discussed.  相似文献   

20.
The development of a mechanistic probe that is especially suitable for the study of asymmetric reactions is presented. Chemically innocuous enantiotopic methyl groups are utilized as probes for the distinct environments that develop at the transition state for the (-)-B-chlorodiisopinocampheylborane reduction of 4'-methylisobutyrophenone. 2H kinetic isotope effects (KIEs) are determined for both enantiotopic methyl groups using two types of competition reactions. One competition is that between the d3-methyl enantiomeric isotopomers. The other competition reaction is that between the d6-dimethyl and perprotiated isotopologues. The rate constant ratios can be converted into kinetic isotope effects upon each of the individual enantiotopic methyl groups by invoking the rule of the geometric mean. The resulting isotope effect measurements yield highly precise values and contribute further understanding to the transition structure for this stereoselective reduction. The results are discussed in the context of steric isotope effects and the origins of these effects, which arise from the impact of steric crowding upon the anharmonicity of C-H bonds in the transition structure relative to the reactant state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号