首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption behavior of the anionic dyes Remazol Brilliant Blue R (RBBR) and Reactive Black 5 (RB5) from aqueous solutions by polyethylenimine ozone oxidized hydrochar (PEI-OzHC) was investigated. The adsorption capacities of both dyes increased with functionalization of PEI in the hydrochar adsorbent. The results of surface characterization (FTIR, BET, TGA, elemental analysis, and SEM) showed that PEI modification greatly enhanced the adsorbent surface chemistry with a slight improvement of adsorbent textural properties. In addition, the adsorption kinetics data showed an excellent adsorption efficiency as reflected in the high removal percentages of the anionic dyes. The Isotherm results indicated that RBBR and RB5 dye adsorption occurred via monolayer adsorption, and chemisorption was the rate-controlling step. The PEI-OzHC adsorbent possesses higher maximum Langmuir adsorption capacity towards RBBR (218.3 mg/g) than RB5 (182.7 mg/g). This increase in adsorption capacity is attributed to the higher number of functional groups in RBBR that interact with the adsorbent. This study reveals the potential use of adsorbents derived from pine wood hydrochar in municipal as well as industrial wastewater treatment. Furthermore, surface chemistry modification is proven as an effective strategy to enhance the performance of biomass-derived adsorbents.  相似文献   

2.
姜哲  于飞  马杰 《物理化学学报》2019,35(7):709-724
抗生素的大量使用,所带来的环境污染问题受到广泛关注。吸附法因去除效率高、普遍适用性强,呈现出广阔的应用前景,开发新型吸附剂是高效能吸附处理的关键。近年来石墨烯优良的物理和化学性质以及吸附性能,使其成为重要的抗生素吸附剂。由于石墨烯自身的局限性以及对石墨烯吸附剂处理效能和稳定性的要求,基于石墨烯设计开发了多种石墨烯基吸附材料。而目前基于水体中抗生素的石墨烯基复合材料的设计、合成及其吸附作用机制缺乏相关的系统性综述。本文综述了目前水体中抗生素的危害,针对石墨烯基复合吸附材料中,广泛关注的磁性石墨烯吸附剂、聚合物/石墨烯吸附剂、三维石墨烯凝胶和石墨烯/生物炭吸附剂的设计和制备方法进行了总结和概述,并阐述了石墨烯基吸附材料对水体中抗生素的主要吸附作用机制。最后,本文对石墨烯基吸附材料去除水体中抗生素未来的发展方向进行了展望。  相似文献   

3.
Molecular interactions have been studied for adsorption of certain biomolecules in aqueous solutions using two different types of polymeric resins as adsorbents. Molecular modeling study is based on molecular orbital theory. Adsorption affinity expresses as the slope of the linear region of the isotherm for a solute is found to be different for different adsorbents, and this difference can be interpreted from the differences in sorbent surface chemistry and morphological structure. The adsorptive interaction on the polymeric resins computed on the basis of frontier orbital theory seems to correlate well with the experimentally measured adsorption affinity. Electronic states of adsorbent and adsorbate were calculated using the semiempirical molecular orbital (MO) method from which energy of adsorption in aqueous solution was estimated. It was found that charge transfer interaction plays an important role in the adsorption of certain biomolecules on aqueous solution. The experimentally measured enthalpy of adsorption seems to correlate well with the adsorptive interaction energy computed from molecular orbital theory.  相似文献   

4.
A magnetic adsorbent was synthesized by modification of activated carbons with magnetic iron oxide nanoparticles (AC‐MIONs). The preparation method is fast and could be carried out in an ordinary condition. The AC‐MIONs were used as quite efficient adsorbents for separation of methylene blue (MB) from aqueous solution in a batch process. The effect of different parameters such as pH, temperature, electrolyte concentration, contact time and interfering ions on the removal of MB were studied. The adsorption data were analyzed by Langmuir and Freundlich isotherm models and a maximum adsorption amount of 47.62 mg g‐1 and a langmuir adsorption equilibrium constant of 3.0 L mg‐1 were obtained. The obtained results revealed that AC‐MIONs were effective adsorbents for fast removal of MB from different aqueous solutions. This adsorbent was successfully used for removal of MB from Karoon River water.  相似文献   

5.
《Comptes Rendus Chimie》2014,17(12):1203-1211
A thiol-functionalized hierarchical zeolite nanocomposite was synthesized and investigated with a view to remove mercury from aqueous solutions. The hierarchical zeolite was prepared by the use of a beta zeolite and of cetyltrimethylammoniumbromide (CTAB). The ligand, 3-mercaptopropyltrimethoxysilane containing thiol (–SH) groups, was then immobilized on the surface of the hierarchical zeolite through grafting with surface silanol groups. FTIR, XRD, SEM, TG-DTG, and N2 adsorption–desorption techniques were used to characterize the nanocomposite before and after functionalization. Adsorption experiments showed that this adsorbent was an excellent one to bind mercury with high selectivity; an adsorption capacity of 8.2 mequiv·g−1 of adsorbent was obtained. Furthermore, the adsorbent retained most of its capacity after regeneration with nitric acid and thiourea solutions. The adsorption data was fitted to the Freundlich isotherm.  相似文献   

6.
The adsorptive removal of lead (II) from aqueous medium was carried out by chemically modified silica monolith particles. Porous silica monolith particles were prepared by the sol-gel method and their surface modification was carried out using trimethoxy silyl propyl urea (TSPU) to prepare inorganic–organic hybrid adsorbent. The resultant adsorbent was evaluated for the removal of lead (Pb) from aqueous medium. The effect of pH, adsorbent dose, metal ion concentration and adsorption time was determined. It was found that the optimum conditions for adsorption of lead (Pb) were pH 5, adsorbent dose of 0.4 g/L, Pb(II) ions concentration of 500 mg/L and adsorption time of 1 h. The adsorbent chemically modified SM was characterized by scanning electron microscopy (SEM), BET/BJH and thermo gravimetric analysis (TGA). The percent adsorption of Pb(II) onto chemically modified silica monolith particles was 98%. An isotherm study showed that the adsorption data of Pb(II) onto chemically modified SM was fully fitted with the Freundlich and Langmuir isotherm models. It was found from kinetic study that the adsorption of Pb(II) followed a pseudo second-order model. Moreover, thermodynamic study suggests that the adsorption of Pb(II) is spontaneous and exothermic. The adsorption capacity of chemically modified SM for Pb(II) ions was 792 mg/g which is quite high as compared to the traditional adsorbents. The adsorbent chemically modified SM was regenerated, used again three times for the adsorption of Pb(II) ions and it was found that the adsorption capacity of the regenerated adsorbent was only dropped by 7%. Due to high adsorption capacity chemically modified silica monolith particles could be used as an effective adsorbent for the removal of heavy metals from wastewater.  相似文献   

7.
Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were chemically modified with 3-aminopyrazole (MWCNTs-f) and applied as an efficient adsorbent to mercury and arsenic adsorption from aqueous solutions. The adsorbents were characterized by FT-IR, EDX, FE-SEM, TGA, and BET. The effects of pH, adsorbent dose, and initial ions concentration on the adsorption efficiency and the optimum conditions were investigated by central composite design. The optimum conditions were obtained at pH 7.6–7.9, adsorbent dose 20 mg, and initial ions concentration 20 ppm. So the maximum adsorption efficiencies in these conditions were 80.5 and 72.4% for the removal of Hg(II) and As(III) by MWCNTs-f, respectively. The quadratic model was used for the analysis of variance and indicated that adsorption of metal ions strongly depends on pH. Also, the pseudo-second-order model has been achieved from the adsorption kinetic studies. Furthermore, the experimental data were well fitted to the Langmuir isotherm and the maximum adsorption capacities obtained were 112 and 133 mg g?1 for the adsorption of Hg(II) and As(III) by MWCNTs-f, respectively. Moreover, a thermodynamic study revealed that the adsorption reactions were spontaneous and endothermic with the increase in randomness. In addition, a desorption study showed the favorable regeneration ability of MWCNTs-f even after three adsorption–desorption cycles. Therefore, the MWCNTs-f adsorbent has good potential for the removal of Hg(II) and As(III) pollutants from aqueous solutions.  相似文献   

8.
Selective separation of heavy metal ions from acidic aqueous solutions is of strong interest for certain industrial processes, such as electroplating, as well as environmental protection, for example battery recycling. Amino-functionalized adsorbents are often discussed as suitable material for this purpose. Herein, two silica-based adsorbents functionalized with 3-aminopropyl- and 3-[2-[2-aminoethylamino]-ethylamino]-propyl-ligands resulting in adsorbents MonoA and TriA, respectively, were investigated regarding their separation behavior with focus on nickel(II) and cobalt(II) in batch as well as continuous flow experiments in acidic aqueous solutions. For both adsorbents, pH shifts into the alkaline range were observed in the process solutions, causing precipitation of metal hydroxides mainly in the particle pores in case of adsorbent MonoA and a combination of precipitation and adsorption regarding adsorbent TriA. Contrary to prior studies, our findings evidence that amino-functionalized adsorbents are not applicable for nickel(II) and cobalt(II) in selective adsorption processes and additionally demonstrate that, besides batch investigations, continuous flow experiments are essential for well-founded adsorbent selections in process development.  相似文献   

9.
The results presented in this work are related to the design of a guideline to develop specific properties at the surface of an activated carbon (AC). For this, two model aromatic compounds have been synthesized and their electrolytic behavior in aqueous solutions was studied by a potentiometric method. The textural characteristics of the activated carbon were determined by porosimetry methods. The nature of oxygen-carrying functions and the acid-base behavior of the AC surface were characterized by TPD and potentiometric titration methods, respectively. The adsorption and desorption equilibria of the aromatic compounds on activated carbon were measured in aqueous solutions, and the hysteresis between adsorption and desorption, which reveals irreversible adsorption, was discussed on the basis of the frontier orbital theory. HOMO and LUMO orbitals of the adsorbent and adsorbates were calculated, and irreversible adsorption was attributed to the small energy difference between HOMO and LUMO of the aromatic adsorbates and the adsorbent. Adsorption equilibria of K2CrO4 in aqueous solution on the AC alone and on the AC-aromatic ligand adsorbents, respectively, prove the efficient development of specific chemical functions at the carbon surface provided by the adsorbed aromatic compounds.  相似文献   

10.
A novel of hydrophilic and polar N-vinylpyrrolidone modified post-crosslinked resin was synthesized and the adsorption behaviors toward puerarin from aqueous solution were investigated. The post-crosslinked adsorbent PNVP-DVBpc was prepared by Friedel-Crafts reaction of residual double bonds without external crosslinking agent. The specific surface area of precursor PNVP-DVB increased obviously after post-crosslinking modification. The synthesized adsorbents were characterized by BET surface area, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The adsorption behaviors of puerarin from aqueous solution onto precursor PNVP-DVB and post-crosslinked adsorbent PNVP-DVBpc were thoroughly researched. Commercial polymeric adsorbents Amberlite XAD-4 and AB-8 were chosen as the comparison. Among the four media, PNVP-DVBpc presented the largest adsorption capacity of puerarin, which resulted from the synergistic effect of high specific surface area and polar groups (amide groups) onto the adsorbent matrix. Experimental results showed that equilibrium isotherms could be fitted by Freundlich model and the kinetic data could be characterized by pseudo-second order model reasonably. Column adsorption experiments indicated that the puerarin could be completely desorbed by 4.0 BV industrial alcohol. Continuous column adsorption-regeneration cycles demonstrated the PNVP-DVBpc without any significant adsorption capacity loss during operation.  相似文献   

11.
溴化铵改性膨润土脱除气态单质汞的特性及机理分析   总被引:1,自引:0,他引:1  
采用溴化铵对钠基膨润土进行改性制得脱汞吸附剂,在固定床实验装置上对所制备的吸附剂进行脱汞性能测试。脱汞实验结果表明,钠基膨润土较钙基膨润土在脱汞性能上提高不大,而溴化铵改性的钠基膨润土(Br-Ben/Na)脱汞性能得到明显提高,脱汞效率达到97.7%。吸附温度的升高有利于对Hg0的脱除,在140℃下,10%Br-Ben/Na吸附剂的脱汞率能长时间保持在90%以上,说明在此吸附过程中化学吸附占主导性作用。通过N2吸附/脱附、X射线衍射(XRD)、元素分析仪和傅里叶变换红外光谱(FT-IR)分析等结果表明,改性后的膨润土比表面积下降,平均孔径增大;铵根离子进入到膨润土的层间置换出层间钠离子,煅烧活化过程中层间的铵根离子并未分解,而在层间与膨润土结合为某吸附活性组分协助Br-与Hg0反应,提高了膨润土的脱汞性能。  相似文献   

12.
The behaviour of some Schiff bases in the presence of metal ions is very selective in complex formation. In this study, new, selective and easily prepared adsorbent materials have been developed. Multiwalled carbon nanotubes (MWCNTs) are quite suitable as supporting material for preparation of new solid phase adsorbents modified with Schiff bases due to their selective nature. Different Schiff bases were designed and synthesised as adsorbent agents for Ni(II) and Cu(II) ions, according to the literature, and MWCNTs were modified with these Schiff bases. The modification of CNTs was performed by adsorption from the alcoholic solution of Schiff base. The measurements of Ni(II) and Cu(II) ions were carried out using ICP-MS. Different parameters such as pH, model and eluent solution flow rates, eluent type, amount of ligand, sample volume and effect of foreign ions, which have an effect upon recovery of analytes, were investigated. The obtained results indicated that enrichment can be done with six modified adsorbent materials for Cu(II) at pH 9 and two modified adsorbent materials for Ni(II) at pH 8. It was concluded that four adsorbent materials were selective only for the enrichment of Cu(II). Merely one modified adsorbent material was noneligible for the enrichment of Cu(II) and Ni(II). The solid phase adsorbents prepared by modification with two of the Schiff bases used in this study showed an enrichment factor of 80 for both metal ions, whereas the solid phase adsorbents prepared by modification with four of the Schiff bases showed an enrichment factor of 40 for Cu(II) ions. The confirmation of the developed method was tested with certified reference materials with satisfactory results.  相似文献   

13.

In this study, the performance of modified adsorbents obtained from activated carbon for the adsorption of thorium(IV) ions from aqueous media was investigated. The analytical and spectroscopic methods such as FT-IR, BET, SEM and UV–Vis were used to examine the properties of the modified materials. According to the analysis results, the both adsorbents had large surface areas after modification. Then, temperature, pH, mixing time and solution concentration parameters were observed to determine optimum thorium adsorption conditions on modified materials. The obtained results from the experiments were applied different three kinetic models and adsorption isotherms and thermodynamic parameters were calculated and then all of the results were interpreted. The adsorption process for both adsorption systems was observed to be compatible with the pseudo-second-order kinetic model. The adsorption equilibrium data were best described by the Langmuir model for modified adsorbent with KMnO4 and by the Freundlich model for modified adsorbent with NaOH. Furthermore, the calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the both adsorption processes were endothermic and spontaneous. The data show that modified adsorbents can be used as influential and low-cost adsorbents to remove thorium ion. Modified new adsorbents were highly selective for thorium ion in competitive adsorption studies.

  相似文献   

14.
Multistage chemical modification of the surface of silica with β-cyclodextrin was performed. IR spectroscopy and quantitative analysis of surface compounds were used to prove the structure of modified silica. The adsorption of Hg(II) from dilute solutions was studied. The adsorption affinity of silica for mercury ions increased because of the formation of supramolecular structures with chemically immobilized β-cyclodextrin.  相似文献   

15.
Two kinds of different-shaped poly(o-phenylenediamine) (PoPD) polymers: solid and hollow sub-microspheres with both size of about 700 nm synthesized by a solution route without any additional directing agents, were employed as efficient adsorbents for removal of Pb(??) ions from water. Firstly, chemical structures of PoPD sub-microspheres were performed by Fourier-transform infrared (FT-IR), UV-vis, (1)H NMR spectra, X-ray diffraction (XRD) and GPC analysis. When used as adsorbents, both PoPD hollow and solid sub-microspheres showed high adsorptivity and adsorption capacity towards Pb(??) ions in water, and mechanisms of adsorption behaviors were revealed by XRD and X-ray photoelectron spectra (XPS). It was found that the pH and concentration of Pb(??) ion solution, as well as contact time and adsorbent dosage affect the degree of adsorption. Adsorption isotherms and kinetics of Pb(??) ions onto PoPD sub-microspheres were also investigated according to experimental data. Comparative investigations of adsorption behaviors revealed that hollow sub-microspheres showed enhanced adsorptivity adsorption capacity towards Pb(??) ions as compared with solid sub-microspheres typical at low adsorbent dosage. PoPD hollow sub-microspheres also showed good adsorptivity for other heavy-metal ions, such as Hg(??), Cd(??) and Cu(??), which implied their potential applications as effective adsorbents for heavy-metal ions in water.  相似文献   

16.
Physical adsorption of various adsorbents on the surface of premodified montmorillonite platelets was performed to fully organophilize the inorganic platelets for the purpose of their easy nanoscale dispersion in the polymer matrices during compounding. Different extents of adsorption could be achieved owing to the nature and the functionality of the adsorbents. High molecular weight adsorbents not only enhanced the organic coverage of the platelets but also were observed to contribute toward the thermal stability improvement of the organic modification, thus further fitting the use of such clays for high temperature compounding. The amount of adsorption could also be quantified with respect to the initial amount of adsorbent used in the process. The importance of a clean surface free from any excess surface modification or adsorbent molecules was emphasized. The adsorption process is an effective means to generate such high potential montmorillonites and is much simpler in technique than the common methods of grafting of polymer chains from the clay surface.  相似文献   

17.
Using the noncovalent immobilization of some thiacalix[4]arene derivatives on the surface of silanized silica, we obtained efficient adsorption materials for the extraction of Eu(III) ions from aqueous solutions of medium mineralization. The specific surface area of the adsorbents is 200–370 m2/g. It is shown that adsorbents containing thiacalix[4]arenes with phosphoryl groups selectively extract up to 99% of europium ions from aqueous solutions at pH 5.5–6; they are characterized by adsorption capacity of 7.5–14.5 mg/g and high distribution coefficients. The studied adsorbents exhibit high selectivity with respect to Eu(III) ions, wherein the distribution coefficients for Cs, Sr, Tb(III), Sm(III), Gd(III), La(III), and UO22+ are five times or more smaller.  相似文献   

18.
The hydrophobic-hydrophilic character of a series of microporous activated carbons was explored as a key factor in competitive adsorption of a non-polar compound from liquid phase. The selectivity of the carbon surface towards naphthalene was explored by performing the adsorption isotherms in water, cyclohexane and heptane. Solvent polarity and adsorbent hydrophobic character were found to strongly influence the adsorption capacity of naphthalene. In aqueous media, despite the non-polar character of the adsorbate, surface acidity lowered adsorption capacity. This is attributed to the competition of water from the adsorption sites, via H-bonding with surface functionalities and the formation of hydration clusters that reduce the accessibility and affinity of naphthalene to the inner pore structure. In organic media the uptake decreased due to competition of the hydrophobic solvent for the active sites of the carbon and to solvation effects. This competitive effect of the solvent is minimized in oxidized carbons as opposed to the trend obtained in aqueous solutions. The results confirmed that although adsorption of naphthalene strongly depends on the narrow microporosity of the adsorbent, competitive adsorption of the solvent for the active sites becomes important.  相似文献   

19.
This work addresses the adsorption of benzothiophene (BT), as a model heterocyclic and aromatic sulphur compound present in road fuels, over agglomerated zeolites with faujasite structure. Several adsorbents based on zeolites with FAU structure have been prepared with different Si/Al molar ratios and exchange cations and then agglomerated. The influence of the zeolite basicity has been studied, both in equilibrium and dynamic liquid phase adsorption experiments. Basicity of the adsorbent increased as the Si/Al molar ratio and the electronegativity of the exchange cation decreased. In equilibrium experiments, the affinity towards the adsorbent increased as the Si/Al molar ratio decreased, showing the highest affinity for exchanged low silica X zeolites with medium basicity (A-KLSX-02). Dynamic experiments showed that the less zeolite basicity, the higher fractional bed utilization and adsorption capacity at breakthrough time. Besides, zeolites with high basicity did not reach the equilibrium capacity due to the low diffusivity of BT into the micropores. Thermogravimetric analyses of the spent adsorbents showed a stronger BT adsorption onto the more basic zeolites. As main conclusion, adsorbents with medium basicity could present the best performance in fuel desulphurization due to their high affinity with sulphur compounds, although diffusion problems should be taken into account.  相似文献   

20.
Agricultural wastes have great potential for the removal of heavy metal ions from aqueous solution. The contamination of water by toxic heavy metals is a worldwide environmental problem. Unlike organic pollutants, the majority of which are susceptible to biological degradation, heavy metals do not degrade into harmless end products. Discharges containing cadmium, in particular, are strictly controlled because of the highly toxic nature of this element and its tendency to accumulate in the tissues of living organisms. This work aims to develop inexpensive, highly available, effective metal ion adsorbents from natural wastes as alternatives to existing commercial adsorbents. In particular, Tamrix articulata wastes were modified chemically by esterification with maleic acid to yield a carboxyl-rich adsorbent. The adsorption behavior of treated Tamrix articulata wastes toward cadmium ions in aqueous solutions in a batch system has been studied as a function of equilibration time, adsorbent dose, temperature and pH. Results showed that the maximum adsorption capacity was 195.5 mg/g in a pH 4 solution at 30 °C with a contact time of 120 min, an initial concentration of 400 mg/L and an adsorbent dose of 0.3 g/L. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order kinetic models. It was shown that the adsorption of cadmium could be described by a pseudo-second-order equation. The experimental data were also analyzed using the Langmuir and Freundlich models of adsorption. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° have been evaluated and it has been found that the sorption process was spontaneous and exothermic in nature. From all of our data, we conclude that the treated Tamrix articulata wastes investigated in this study showed good potential for cadmium removal from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号