首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of DNA hairpins (AqGn) possessing a tethered anthraquinone (Aq) end-capping group were synthesized in which the distance between the Aq and a guanine-cytosine (G-C) base pair was systematically varied by changing the number (n - 1) of adenine-thymine (A-T) base pairs between them. The photophysics and photochemistry of these hairpins were investigated using nanosecond transient absorption and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. Upon photoexcitation, (1*)Aq undergoes rapid intersystem crossing to yield (3*)Aq, which is capable of oxidizing purine nucleobases resulting in the formation of (3)(Aq(-?)Gn(+?)). All (3)(Aq(-?)Gn(+?)) radical ion pairs exhibit asymmetric TREPR spectra with an electron spin polarization phase pattern of absorption and enhanced emission (A/E) due to their different triplet spin sublevel populations, which are derived from the corresponding non-Boltzmann spin sublevel populations of the (3*)Aq precursor. The TREPR spectra of the (3)(Aq(-?)Gn(+?)) radical ion pairs depend strongly on their spin-spin dipolar interaction and weakly on their spin-spin exchange coupling. The anisotropy of (3)(Aq(-?)Gn(+?)) makes it possible to determine that the π systems of Aq(-?) and G(+?) within the radical ion pair are parallel to one another. Charge recombination of the long-lived (3)(Aq(-?)Gn(+?)) radical ion pair displays an unusual bimodal distance dependence that results from a change in the rate-determining step for charge recombination from radical pair intersystem crossing for n < 4 to coherent superexchange for n > 4.  相似文献   

2.
The thermal stability and conformational dynamics of DNA hairpin and dumbbell conjugates having short A-tract base pair domains connected by tri- or hexa(ethylene glycol) linkers is reported. The formation of stable base-paired A-tract hairpins having oligo(ethylene glycol) linkers requires a minimum of four or five A-T base pairs. The formation of base-paired dumbbells having oligo(ethylene glycol) linkers by means of chemical ligation of nicked dumbbells requires a minimum of two A-T base pairs on either side of the nick. Molecular modeling indicates that the hexa(ethylene glycol) linker is sufficiently long to permit formation of strain-free loop regions and B-DNA base pair domains. In contrast, the tri(ethylene glycol) is too short to permit Watson-Crick base pairing between the bases attached to the linker. The shorter linker distorts the duplex, resulting in fluxional behavior in which the base pairs adjacent to the linker and at the open end of the hairpin dissociate on the nanosecond time scale. The loss of interstrand binding energy caused by these fluctuations leads to a difference of approximately 5 degrees C in melting temperature between EG3 and EG6 hairpins. An analysis of the fluxional behavior of the EG3 adjacent base-pair has been used to study the pathways for base flipping and base stacking, including the identification of rotated base (partially flipped) intermediates that have not been described previously for A-T base pairs.  相似文献   

3.
The excited-state behavior of synthetic DNA dumbbells possessing stilbenedicarboxamide (Sa) linkers separated by short A-tracts or alternating A-T base-pair sequences has been investigated by means of fluorescence and transient absorption spectroscopy. Electronic excitation of the Sa chromophores results in conversion of a locally excited state to a charge-separated state in which one Sa is reduced and the other is oxidized. This symmetry-breaking process occurs exclusively via a multistep mechanism-hole injection followed by hole transport and hole trapping-even at short distances. Rate constants for charge separation are strongly distance-dependent at short distances but become less so at longer distances. Disruption of the A-tract by inversion of a single A-T base pair results in a pronounced decrease in both the rate constant and efficiency of charge separation. Hole trapping by Sa is highly reversible, resulting in rapid charge recombination that occurs via the reverse of the charge separation process: hole detrapping, hole transport, and charge return to regenerate the locally excited Sa singlet state. These results differ in several significant respects from those previously reported for guanine or stilbenediether as hole traps. Neither charge separation nor charge recombination occur via a single-step superexchange mechanism, and hole trapping is slower and detrapping faster when Sa serves as the electron donor. Both the occurrence of symmetry breaking and reversible hole trapping by a shallow trap in a DNA-based system are without precedent.  相似文献   

4.
The mechanism and dynamics of photoinduced charge separation and charge recombination have been investigated in synthetic DNA hairpins possessing donor and acceptor stilbenes separated by one to seven A:T base pairs. The application of femtosecond broadband pump-probe spectroscopy, nanosecond transient absorption spectroscopy, and picosecond fluorescence decay measurements permits detailed analysis of the formation and decay of the stilbene acceptor singlet state and of the charge-separated intermediates. When the donor and acceptor are separated by a single A:T base pair, charge separation occurs via a single-step superexchange mechanism. However, when the donor and acceptor are separated by two or more A:T base pairs, charge separation occurs via a multistep process consisting of hole injection, hole transport, and hole trapping. In such cases, hole arrival at the electron donor is slower than hole injection into the bridging A-tract. Rate constants for charge separation (hole arrival) and charge recombination are dependent upon the donor-acceptor distance; however, the rate constant for hole injection is independent of the donor-acceptor distance. The observation of crossover from a superexchange to a hopping mechanism provides a "missing link" in the analysis of DNA electron transfer and requires reevaluation of the existing literature for photoinduced electron transfer in DNA.  相似文献   

5.
Photoinduced charge separation and recombination in a carotenoid-porphyrin-fullerene triad C-P-C(60)(1) have been followed by multifrequency time-resolved electron paramagnetic resonance (TREPR) at intermediate magnetic field and microwave frequency (X-band) and high field and frequency (W-band). The electron-transfer process has been characterized in the different phases of two uniaxial liquid crystals (E-7 and ZLI-1167). The triad undergoes photoinduced electron transfer, with the generation of a long-lived charge-separated state, and charge recombination to the triplet state, localized in the carotene moiety, mimicking different aspects of the photosynthetic electron-transfer process. Both the photoinduced spin-correlated radical pair and the spin-polarized recombination triplet are observed starting from the crystalline up to the isotropic phase of the liquid crystals. The W-band TREPR radical pair spectrum has allowed unambiguous assignment of the spin-correlated radical pair spectrum to the charge-separated state C(.+)-P-C(60)(.-). The magnetic interaction parameters have been evaluated by simulation of the spin-polarized radical pair spectrum and the spin-selective recombination rates have been derived from the time dependence of the spectrum. The weak exchange interaction parameter (J = +0.5 +/- 0.2 G) provides a direct measure of the dominant electronic coupling matrix element V between the C(.+)-P-C(60)(.-) radical pair state and the recombination triplet state (3)C-P-C(60). The kinetic parameters have been analyzed in terms of the effect of the liquid crystal medium on the electron-transfer process. Effects of orientation of the molecular triad in the liquid crystal are evidenced by simulations of the carotenoid triplet state EPR spectra at different orientations of the external magnetic field with respect to the director of the mesophase. The order parameter (S = 0.5 +/- 0.05) has been evaluated.  相似文献   

6.
Synthetic conjugates possessing bis(2-hydroxyethyl)stilbene-4,4'-diether linkers (Sd2) form the most stable DNA hairpins reported to date. Factors that affect stability are length and flexibility of the linkers and pi-stacking of the stilbene moiety on the adjacent base pair. The crystal structure of the hairpin d(GT(4)G)-Sd2-d(CA(4)C) was determined at 1.5 A resolution. The conformations of the two molecules in the asymmetric unit differ both in the linker and the stem portions. One of them shows a planar stilbene that is stacked on the adjacent G:C base pair. The other displays considerable rotation between the phenyl rings and an unprecedented edge-to-face orientation of stilbene and base pair. The observation of considerable variations in the conformation of the Sd moiety in the crystal structure allows us to exclude restriction of motion as the reason for the absence of Sd photoisomerization in the hairpins. Conformational differences in the stem portion of the two hairpin molecules go along with different Mg(2+) binding modes. Most remarkable among them is the sequence-specific coordination of a metal ion in the narrow A-tract minor groove. The crystal structure provides unequivocal evidence that a fully hydrated Mg(2+) ion can penetrate the narrow A-tract minor groove, causing the groove to further contract. Overall, the structural data provide a better understanding of the origins of hairpin stability and their photochemical behavior in solution.  相似文献   

7.
The synthesis and properties of a perylenediamide diol linker and several DNA hairpins possessing this linker are described. The diol linker absorbs and fluoresces strongly in the visible. Hairpins having poly(dA)-poly(dT) stems have fluorescence quantum yields and decay times similar to those of the linker, indicating that hole injection does not occur from the singlet excited linker into the base pair domain. Fluorescence quenching by dG or dZ bases is observed when these bases are located near the linker. The strong distance dependence of fluorescence quenching is consistent with a superexchange mechanism for electron transfer. Failure to observe formation of the linker anion radical by means of femtosecond time resolved absorption spectroscopy is attributed to fast charge recombination. The properties and behavior of the perylene linker and its hairpins are compared to those of other arenedicarboxamide linkers.  相似文献   

8.
The impact of donor-acceptor electronic coupling and bridge energetics on the preference for hole or electron transfer leading to charge recombination in a series of donor-bridge-acceptor (D-B-A) molecules was examined. In these systems, the donor is 3,5-dimethyl-4-(9-anthracenyl)-julolidine (DMJ-An) and acceptor is naphthalene-1,8:4,5-bis(dicarboximide) (NI), while the bridges are either oligo(p-phenyleneethynylene) (PE(n)P, where n = 1-3) 1-3 or oligo(2,7-fluorenone) (FN(n), where n = 1-3) 4-6. Photoexcitation of 1-3 and 4-6 produces DMJ(+?)-An-PE(n)P-NI(-?) and DMJ(+?)-An-FN(n)-NI(-?), respectively, which undergo radical pair intersystem crossing followed by charge recombination to yield both (3*)An and (3*)NI, which are observed by time-resolved electron paramagnetic resonance (TREPR) spectroscopy. (3*)NI is produced by hole transfer from DMJ(+?) to NI(-?), while (3*)An is produced by electron transfer from NI(-?) to DMJ(+?), using the agency of the bridge HOMOs and LUMOs, respectively. By monitoring the initial population of (3*)NI and (3*)An in 1-6, the data show that charge recombination occurs preferentially by selective hole transfer when the bridge is PE(n)P, while it occurs by preferential electron transfer when the bridge is FN(n). Over time, the initial population of (3*)NI decreases, while that of (3*)An increases, indicating that triplet-triplet energy transfer (TEnT) occurs. The observed distance dependence of TEnT from (3*)NI to An is weakly exponential with a decay parameter β = 0.08 ?(-1) for the PE(n)P series and β = 0.03 ?(-1) for the FN(n) series. In the PE(n)P series, this weak distance dependence is attributed to a transition from the superexchange regime to hopping transport as the energy gap for triplet energy injection onto the bridge becomes significantly smaller as n increases, while in the FN(n) series the corresponding energy gap is small for all n resulting in triplet energy transport by the hopping mechanism.  相似文献   

9.
The synthesis, steady-state spectroscopy, and transient absorption spectroscopy of DNA conjugates possessing both stilbene electron donor and electron acceptor chromophores are described. These conjugates are proposed to form nicked DNA dumbbell structures in which a stilbenedicarboxamide acceptor and stilbenediether donor are separated by variable numbers of A-T or G-C base pairs. The nick is located either adjacent to one of the chromophores or between two of the bases. Thermal dissociation profiles indicate that stable structures are formed possessing as few as two A-T base pairs. Circular dichroism (CD) spectra in the base pair region are characteristic of B-DNA duplex structures, whereas CD spectra at longer wavelengths display two bands attributed to exciton coupling between the two stilbenes. The sign and intensity of these bands are dependent upon both the distance between the chromophores and the dihedral angle between their transition dipoles [Deltaepsilon approximately Rda(-2) sin(2theta)]. Pulsed laser excitation of the stilbenediamide results in creation of the acceptor-donor radical ion pair, which decays via charge recombination. The dynamics of charge separation and charge recombination display an exponential distance dependence, similar to that observed previously for systems in which guanine serves as the electron donor. Unlike exciton coupling between the stilbenes, there is no apparent dependence of the charge-transfer rates upon the dihedral angle between donor and acceptor stilbenes. The introduction of a single G-C base pair between the donor and acceptor results in a change in the mechanism for charge separation from single step superexchange to hole hopping.  相似文献   

10.
Magnetic field effect studies of alkylcobalamin photolysis provide evidence for the formation of a reactive radical pair that is born in the singlet spin state. The radical pair recombination process that is responsible for the magnetic field dependence of the continuous-wave (CW) quantum yield is limited to the diffusive radical pair. Although the geminate radical pair of adenosylcob(III)alamin also undergoes magnetic field dependent recombination (A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152–12157, 1993), this process does not account for the magnetic field dependence of the CW quantum yield that is only observed in viscous solvents. Glycerol and ethylene glycol increase the microviscosity of the solution and thereby increase the lifetime of the spin-correlated diffusive radical pair. This enables magnetic field dependent recombination among spin-correlated diffusive radical pairs in the solvent cage. Magnetic field dependent recombination is not observed in the presence of nonviscosigenic alcohols such as isopropanol, thereby indicating the importance of the increased microviscosity of the medium. Paramagnetic radical scavengers that trap alkyl radicals that escape the solvent cage do not diminish the magnetic field effect on the CW quantum yield, thereby ruling out radical pair recombination among randomly diffusing radical pairs, as well as excluding the involvement of solvent-derived radicals. Magnetic field dependent recombination among alkylcobalamin radical pairs has been simulated by a semiclassical model of radical pair dynamics and recombination. These calculations support the existence of a singlet radical pair precursor.  相似文献   

11.
Photoexcitation of a series of donor-bridge-acceptor (D-B-A) systems, where D = phenothiazine (PTZ), B = p-phenylene (Phn), n = 1-5, and A= perylene-3,4:9,10-bis(dicarboximide) (PDI) results in rapid electron transfer to produce 1(PTZ+*-Phn-PDI-*). Time-resolved EPR (TREPR) studies of the photogenerated radical pairs (RPs) show that above 150 K, when n = 2-5, the radical pair-intersystem crossing mechanism (RP-ISC) produces spin-correlated radical ion pairs having electron spin polarization patterns indicating that the spin-spin exchange interaction in the radical ion pair is positive, 2J > 0, and is temperature dependent. This temperature dependence is most likely due to structural changes of the p-phenylene bridge. Charge recombination in the RPs generates PTZ-Phn-3*PDI, which exhibits a spin-polarized signal similar to that observed in photosynthetic reaction-center proteins and some biomimetic systems. At temperatures below 150 K and/or at shorter donor-acceptor distances, e.g., when n = 1, PTZ-Phn-3*PDI is also formed from a competitive spin-orbit-intersystem crossing (SO-ISC) mechanism that is a result of direct charge recombination: 1(PTZ+*-Phn-PDI-*) --> PTZ-Phn-3*PDI. This SO-ISC mechanism requires the initial RP intermediate and depends strongly on the orientation of the molecular orbitals involved in the charge recombination as well as the magnitude of 2J.  相似文献   

12.
The formation of the long-lived, charge-separated state in DNA upon visible light irradiation is of particular interest in molecular-scale optoelectronics, sensor design, and other areas of nanotechnology. However, the efficient generation of the charge-separated state is hampered by fast charge recombination within a contact ion pair, which limits the application of DNA for photoelectrochemical sensors and devices. In this study, a series of protonated 9-alkylamino-6-chloro-2-methoxyacridine (Acr+)- and phenothiazine (Ptz)-modified DNAs were synthesized for the further understanding of the mechanism of charge separation in DNA to generate a long-lived, charge-separated state with a high quantum yield (Phi). The Acr+ serves as a photosensitizer to produce a hole on guanine (G), and the G-C base pairs were used as a hole-transporting pathway to separate a hole from Acr* (the one-electron-reduced form of Acr+) to be trapped at Ptz. Since Acr+ oxides only G upon photoexcitation, the A-T base pair can be used as a spacer between Acr+ and the G-C base pair to avoid the formation of a contact ion pair. The charge injection dynamics was investigated by steady-state fluorescence spectra and fluorescence lifetime measurements, and the Phi and the lifetime of the charge-separated state produced upon photoirradiation were assessed by nanosecond laser flash photolysis of the Acr+- and Ptz-modified DNA. A long-lived, charge-separated state was successfully formed upon visible-light irradiation, and the Phi was the highest for the DNA having a single intervening A-T base pair between Acr+ and the G-C base pair. These results clearly demonstrated that the charge separation process in DNA can be refined by putting a redox-inactive intervening base pair as a spacer between a photosensitizer and the nucleobase to be oxidized to slow down the charge recombination rate.  相似文献   

13.
Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA.  相似文献   

14.
The solution structure of a synthetic DNA mini-hairpin possessing a stilbenediether linker and three G:C base pairs has been obtained using (1)H NMR spectral data and constrained torsion angle molecular dynamics. Notable features of this structure include a compact hairpin loop having a short stilbene-guanine plane-to-plane distance and approximate B-DNA geometry for the three base pairs. Comparison of the electronic spectra of mini-hairpins having one-to-four G:C base pairs and stilbenediether or hexamethyleneglycol linkers reveals the presence of features in the UV and CD spectra of the stilbene-linked hairpins that are not observed for the ethyleneglycol-linked hairpins. Investigation of the electronic structure of a stilbene-linked hairpin having a single G:C base pair by means of time-dependent density functional theory shows that the highest occupied molecular orbital, but not the lowest unoccupied molecular orbital, is delocalized over the stilbene and adjacent guanine. The calculated UV and CD spectra are highly dependent upon hairpin conformation, but reproduce the major features of the experimental spectra. These results illustrate the utility of an integrated experimental and theoretical approach to understanding the complex electronic spectra of pi-stacked chromophores.  相似文献   

15.
An anthraquinone (AQ) based DNA linker and hairpin-forming DNAs linked by the AQ linker with variable A-T base pairs were synthesized for the investigation of electron transfer through double helical DNA (DNA-ET) in self-assembled monolayers (SAMs). The spectroscopic analysis of absorption spectra indicated that the AQ of the hairpin DNA stacked with adjacent A-T base pair. Electrochemical redox response due to the AQ was observed from the hairpin DNA immobilized on gold electrode, thus the hairpin DNA is suitable for the investigation of DNA-ET in SAMs.  相似文献   

16.
A covalent, fixed-distance donor-bridge-acceptor (D-B-A) molecule was synthesized that upon photoexcitation undergoes ultrafast charge separation to yield a radical ion pair (RP) in which the spin-spin exchange interaction (2J) between the two radicals is sufficiently large to result in preferential RP intersystem crossing to the highest-energy RP eigenstate (T(+1)) at the 350 mT magnetic field characteristic of X-band (9.5 GHz) EPR spectroscopy. This behavior is unprecedented in covalent D-B-A molecules, and is evidenced by the time-resolved EPR (TREPR) spectrum at X-band of (3*)D-B-A derived from RP recombination, which shows all six canonical EPR transitions polarized in emission (e,e,e,e,e,e). In contrast, when the RP is photogenerated in a 3400 mT magnetic field, the TREPR triplet spectrum at W-band (94 GHz) of (3*)D-B-A displays the (a,e,e,a,a,e) polarization pattern characteristic of a weakly coupled RP precursor, similar to that observed in photosynthetic reaction center proteins, and indicates a switch to selective population of the lower-energy T(0) eigenstate.  相似文献   

17.
A series of photoinduced H-atom abstraction reactions between anthraquinone-2,6,-disulfonate, disodium salt (AQDS) and differently charged micellar substrates is presented. After a 248 nm excimer laser flash, the first excited triplet state of AQDS is rapidly formed and then quenched by abstraction of a hydrogen atom from the alkyl chain of the micelle surfactant, leading to a spin-correlated radical pair (SCRP). The SCRP is detected 500 ns after the laser flash using time-resolved (direct detection) electron paramagnetic resonance (TREPR) spectroscopy at X-band (9.5 GHz). By changing the charge on the surfactant headgroup from negative (sodium dodecyl sulfate, SDS) to positive (dodecyltrimethylammonium chloride, DTAC), TREPR spectra with different degrees of antiphase structure (APS) in their line shape were observed. The first derivative-like APS line shape is the signature of an SCRP experiencing an electron spin exchange interaction between the radical centers, which was clearly observable in DTAC micelles and absent in SDS micellar solutions. Solutions with surfactant concentrations well below the critical micelle concentration (cmc) or solutions where micellar formation had been disrupted (1:1 v/v CH(3)CN/H(2)O) also showed no APS line shapes in their TREPR spectra. These results support the conclusion that electrostatic forces between the sensitizer (AQDS) charge and the substrate (surfactant) headgroup charge are responsible for the observed effects. The results represent a new example of electrostatic control of a spin exchange interaction in mobile radical pairs.  相似文献   

18.
The structure and properties of 18 hairpin-forming bis(oligonucleotide) conjugates possessing stilbene diether linkers are reported. Conjugates possessing bis(2-hydroxyethyl)stilbene 4,4'-diether linkers form the most stable DNA hairpins reported to date. Hairpins with as few as two T:A base pairs or four noncanonical G:G base pairs are stable at room temperature. Increasing the length of the hydroxyalkyl groups results in a decrease in hairpin thermal stability. On the basis of the investigation of their circular dichroism spectra, all of the hairpins investigated adopt B-DNA structures, except for a hairpin with a short poly(G:C) stem which forms a Z-DNA structure. Both the strong fluorescence of the stilbene diether linkers and their trans-cis photoisomerization are totally quenched in hairpins possessing neighboring T:A and G:C base pairs. Quenching is attributed to an electron-transfer mechanism in which the singlet stilbene serves as an electron donor and T or C serves as an electron acceptor. In contrast, in denatured hairpins and hairpins possessing neighboring G:G base pairs the stilbene diether linkers undergo efficient photoisomerization.  相似文献   

19.
We have recently shown that hairpins containing 2',5'-linked RNA loops exhibit superior thermodynamic stability compared to native hairpins comprised of 3',5'-RNA loops [Hannoush, R. N.; Damha, M. J. J. Am. Chem. Soc. 2001, 123, 12368-12374]. A remarkable feature of the 2',5'-r(UUCG) tetraloop is that, unlike the corresponding 3',5'-linked tetraloop, its stability is virtually independent of the hairpin stem composition. Here, we determine the solution structure of unusually stable hairpins of the sequence 5'-G(1)G(2)A(3)C(4)-(U(5)U(6)C(7)G(8))-G(9)(U/T(10))C(11)C(12)-3' containing a 2',5'-linked RNA (UUCG) loop and either an RNA or a DNA stem. The 2',5'-linked RNA loop adopts a new fold that is completely different from that previously observed for the native 3',5'-linked RNA loop. The 2',5'-RNA loop is stabilized by (a). U5.G8 wobble base pairing, with both nucleotide residues in the anti-conformation, (b). extensive base stacking, and (c). sugar-base and sugar-sugar contacts, all of which contribute to the extra stability of this hairpin structure. The U5:G8 base pair stacks on top of the C4:G9 loop-closing base pair and thus appears as a continuation of the stem. The loop uracil U6 base stacks above U5 base, while the cytosine C7 base protrudes out into the solvent and does not participate in any of the stabilizing interactions. The different sugar pucker and intrinsic bonding interactions within the 2',5'-linked ribonucleotides help explain the unusual stability and conformational properties displayed by 2',5'-RNA tetraloops. These findings are relevant for the design of more effective RNA-based aptamers, ribozymes, and antisense agents and identify the 2',5'-RNA loop as a novel structural motif.  相似文献   

20.
The electronic relaxation processes of a photoexcited linear perylenediimide-perylenemonoimide (PDI-PMI) acceptor-donor dyad were studied. PDI-PMI serves as a model compound for donor-acceptor systems in photovoltaic devices and has been designed to have a high-energy PDI (-*)-PMI (+*) charge transfer (CT) state. Our study focuses on the minimal Gibbs free energy (Delta G ET) required to achieve quantitative CT and on establishing the role of charge recombination to a triplet state. We used time-resolved photoluminescence and picosecond photoinduced absorption (PIA) to investigate excited singlet (S 1) and CT states and complemented these experiments with singlet oxygen ( (1)Delta g) luminescence and PIA measurements on longer timescales to study the population of triplet excited states (T 1). In an apolar solvent like cyclohexene (CHX), photoinduced electron transfer does not occur, but in more polar solvents such as toluene (TOL) and chlorobenzene (CB), photoexcitation is followed by a fast electron transfer, populating the PDI (-*)-PMI (+*) CT state. We extract rate constants for electron transfer (ET; S 1-->CT), back electron transfer (BET; S 1<--CT), and charge recombination (CR) to lower-energy states (CT-->S 0 and CT-->T 1). Temperature-dependent measurements yield the barriers for the transfer reactions. For ET and BET, these correspond to predictions from Marcus-Jortner theory and show that efficient, near quantitative electron transfer ( k ET/ k BET >or= 100) can be obtained when Delta G ET approximately -120 meV. With respect to triplet state formation, we find a relatively low triplet quantum yield (Phi T < 25%) in CHX but much higher values (Phi T = 30-98%) in TOL and CB. We identify the PDI (-*)-PMI (+*) state as a precursor to the T 1 state. Recombination to T 1, rather than to the ground-state S 0, is required to rationalize the experimental barrier for CR. Finally, we discuss the relevance of these results for electron donor-acceptor films in photovoltaic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号