首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis and characterization of [Pt{4'-(R)trpy}(CN)]X (R = Ph, X = BF(4) or SbF(6); R = o-CH(3)C(6)H(4), X = SbF(6); R = o-ClC(6)H(4), X = SbF(6); or R = o-CF(3)C(6)H(4), X = SbF(6)) are described where trpy = 2,2':6',2'-terpyridine. Single crystals of [Pt{4'-(Ph)trpy}(CN)]BF(4).CH(3)CN were grown by vapour diffusion of diethyl ether into an acetonitrile solution of [Pt{4'-(Ph)trpy}(CN)]BF(4). An X-ray crystal structure determination of the solvated complex confirms the near linear coordination of the cyanide ligand to the platinum centre. The cation is almost planar as evidenced by a twist of only 1.9 degrees of the phenyl group out of the plane of the terpyridyl moiety. Cyclic voltammograms were recorded in DMF/0.1 M TBAH for the [Pt{4'-(R)trpy}(CN)](+) cations. Two quasi-reversible one-electron reduction (cathodic) waves are observed with E(1/2) values that show the trend expected for an increasingly lower energy of the trpy-based LUMO of the complex i.e., [Pt{4'-(Ph)trpy}(CN)](+) approximately [Pt{4'-(o-CH(3)C(6)H(4))trpy}(CN)](+) < [Pt{4'-(o-ClC(6)H(4))trpy}(CN)](+) < [Pt{4'-(o-CF(3)C(6)H(4))trpy}(CN)](+). All the [Pt(4'-(R)trpy}(CN)](+) cations are photoluminescent in dichloromethane. Emission by [Pt{4'-(Ph)trpy}(CN)](+) is from an excited state with largely (3)MLCT orbital parentage, but with some intraligand (3)pi-pi* character mixed-in (tau = 0.1 micros). In contrast, the other three cations display emission that appears exclusively intraligand (3)pi-pi* in origin (tau approximately 0.8 micros). Emission spectra have been recorded in a low concentration frozen DME {1 : 5 : 5 (v/v) DMF-MeOH-EtOH} glass. For the R = o-CH(3)C(6)H(4), o-ClC(6)H(4) and o-CF(3)C(6)H(4) cations the envelope of vibronic structure and energies of the vibrational components are essentially the same as that recorded in dichloromethane. However, for the [Pt{4'-(Ph)trpy}(CN)](+) cation, there is a blue-shift in the energies of the vibrational components as compared to that recorded in dichloromethane, as well as a change in the envelope of vibronic structure to a more "domed" pattern; this has been interpreted in terms of a higher percentage of intraligand (3)pi-pi* character in the emitting state for the glass. Increasing the concentration of the glass invariably leads to aggregation of the cations and the consequent development of new low energy bands, such that at 0.200 mM broad peaks centred at ca. 650 and 700 nm dominate the spectrum; these bands are assigned to excimeric (3)pi-pi* and (3)MMLCT emission, respectively.  相似文献   

2.
Tannai H  Tsuge K  Sasaki Y 《Inorganic chemistry》2005,44(15):5206-5208
A stable Ru(II)/Ru(III) mixed-valence state was observed in acetonitrile for the ruthenium binuclear complex bridged by dimercaptothiadiazolate (DeltaE(1/2) = 220 mV for Ru(2)(II,II)/Ru(2)(II,III) and Ru(2)(II,III)/Ru(2)(III,III) processes; K(com) = 5.3 x 10(3)). Upon protonation of the bridging ligand by the addition of equimolar p-toluenesulfonic acid, however, the mixed-valence state diminished (DeltaE(1/2) = 0 mV). The bridging ligand operates as a proton-induced switch of the electronic communication in the dimeric complex.  相似文献   

3.
4.
The present work deals with the isomeric complexes of the molecular composition [Ru(II)(trpy)(L)Cl] in 1 and 2 (trpy = 2,2':6',2'-terpyridine, L = deprotonated form of quinaldic acid, HL). Isomeric identities of 1 and 2 have been established by their single-crystal X-ray structures, which reveal that under the meridional configuration of trpy, O(-) and N donors of the unsymmetrical L are in trans, cis and cis, trans configurations, respectively, with respect to the Ru-Cl bond. Compounds 1 and 2 exhibit appreciable differences in bond distances involving Ru-Cl and Ru-O1/Ru-N1 associated with L on the basis of their isomeric structural features. In relation to isomer 2, the isomeric complex 1 exhibits a slightly lower Ru(II)-Ru(III) oxidation potential [0.35 (1), 0.38 (2) V versus SCE in CH(3)CN] as well as lower energy MLCT transitions [559 nm and 417 nm (1) and 533 nm and 378 nm (2)]. This has also been reflected in the DFT calculation where a lower HOMO-LUMO gap of 2.59 eV in 1 compared to 2.71 eV in 2 is found. The isomeric structural effect in 1 and 2 has also been prominent in their (1)H NMR spectral profiles. The relatively longer Ru-Cl bond in 1 (2.408(2) ?) as compared to 2 (2.3813(9) ?) due to the trans effect of the anionic O(-) of coordinated L makes it labile, which in turn facilitates the transformation of [Ru(II)(trpy)(L)(Cl)] (1) to the solvate species, [Ru(II)(trpy)(L)(CH(3)CN)](Cl) (1a) while crystallizing 1 from the coordinating CH(3)CN solvent. The formation of 1a has been authenticated by its single-crystal X-ray structure. However, no such exchange of "Cl(-)" by the solvent molecule occurs in 2 during the crystallization process from the coordinating CH(3)CN solvent. The labile Ru-Cl bond in 1 makes it a much superior precatalyst for the epoxidation of alkene functionalities. Compound 1 is found to function as an excellent precatalyst for the epoxidation of a wide variety of alkene functionalities under environmentally benign conditions using H(2)O(2) as an oxidant and EtOH as a solvent, while isomer 2 remains almost ineffective under identical reaction conditions. The remarkable differences in catalytic performances of 1 and 2 based on their isomeric structural aspects have been addressed.  相似文献   

5.
Liu P  Wong EL  Yuen AW  Che CM 《Organic letters》2008,10(15):3275-3278
"Iron(II) salt + 4,4',4'-trichloro-2,2':6',2'-terpyridine" is an effective catalyst for epoxidation and aziridination of alkenes and intramolecular amidation of sulfamate esters. The epoxidation of allylic-substituted cycloalkenes achieved excellent diastereoselectivities up to 90%. ESI-MS results supported the formation of iron-oxo and -imido intermediates. Derivitization of Cl 3terpy to O-PEG-OCH 3-Cl 2terpy renders the terpyridine unit to be recyclable, and the "iron(II) salt + 4,4'-dichloro-4'- O-PEG-OCH 3-2,2':6',2'-terpyridine" protocol can be reused without a significant loss of catalytic activity in the alkene epoxidation.  相似文献   

6.
7.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

8.
Electronic structures and spectroscopic properties of [Pt(trpy)C[triple bond]CR](+) (trpy = 2,2', 6',2' '-terpyridine; R = H (1), CH(2)OH (2), and C(6)H(5) (3) ) are studied by ab initio and DFT methods. The ground- and excited-state structures are optimized by the MP2 and CIS methods, respectively. The absorption and emission spectra in the dichloromethane solution are obtained by using TD-DFT (B3LYP) method associated with the PCM model. The calculations indicate that, for 1-3, the variation of the substituents on the acetylide ligand only slightly changes their structures in ground and excited states but leads to a sizable difference in the electronic structures. In both cases of absorption and emission, the energy levels of HOMOs for 1-3 are sensitive to the substituents on acetylide ligand and increase obviously with the introduction of the electron-donating groups; however, those of trpy-based LUMOs vary slightly. The lowest-energy emissions are attributed to triplet acetylide/Pt --> trpy charge transfer ((3)LLCT/(3)MLCT) transitions and the lowest-energy absorptions and emissions for 1-3 are red-shifted on the order of 1 < 2 < 3 when the electron-donating groups are introduced into the acetylide ligand. By comparison of the results obtained by using different functionals in TD-DFT method, the calculations indicate that the exchange-correlation functionals (B3LYP, B3P86 and B3PW91) involving Becke three parameter hybrid functionals are appropriate for the terpyridyl platinum(II) acetylide complexes to get the relatively satisfactory results for the absorption spectra. The underestimated excitation energies of lowest-lying absorption bands are probably due to insufficient flexibility in TD-DFT method to describe states with large charge transfer.  相似文献   

9.
10.
A new N-heterocyclic complex of ytterbocene (Cp(2)Yb(II), Cp = C(5)Me(5)) has been prepared by the addition of 4'-cyano-2,2':6',2' '-terpyridine (tpyCN) to Cp(2)Yb(II)(OEt(2)) in toluene to give a dark blue species designated as Cp(2)Yb(tpyCN). The effect of the electron-withdrawing group (-CN) on the redox potentials of the charge-transfer form of this complex [in which an electron is transferred from the f(14) metal center to the lowest unoccupied (pi) molecular orbital of the tpyCN ligand to give a 4f(13)-pi(1) electronic configuration] has been quantified by cyclic voltammetry. The tpyCN ligand stabilizes this configuration by 60 mV more than that in the unsubstituted tpy ligand complex and by 110 mV more than that in the unsubstituted bpy ligand complex. Magnetic susceptibility measurements corroborate the enhanced stabilization of the 4f(13)-pi(1) configuration by the substituted terpyridyl ligand complex. Furthermore, the temperature dependence of the magnetic data is most consistent with a thermally induced valence tautomeric equilibrium between this paramagnetic 4f(13)-pi(1) form that dominates near room temperature and the diamagnetic 4f(14)-pi(0) form that dominates at low temperature. Differing coordination modes for the tpyCN ligand to the ytterbocene center have also been confirmed by isolation and X-ray crystallographic characterization of complexes binding through either the cyano nitrogen of tpyCN or the three terpyridyl nitrogen atoms of tpyCN.  相似文献   

11.
The heteroleptic and homoleptic ruthenium(II) complexes of 4'-cyano-2,2':6',2' '-terpyridine are synthesized by palladium catalyzed cyanation of the corresponding Ru(II) complexes of 4'-chloro-2,2':6',2' '-terpyridine. The introduction of the strongly electron-withdrawing cyano group into the Ru(tpy)(2)(2+) moiety dramatically changes its photophysical and redox properties as well as prolongs its room temperature excited-state lifetime.  相似文献   

12.
Ruthenium-terpyridine complexes incorporating a 2,2'-dipyridylamine ancillary ligand [Ru(II)(trpy)(L)(X)](ClO(4))(n) [trpy = 2,2':6',2' '-terpyridine; L = 2,2'-dipyridylamine; and X = Cl(-), n = 1 (1); X = H(2)O, n = 2 (2); X = NO(2)(-), n = 1 (3); X = NO(+), n = 3 (4)] were synthesized in a stepwise manner starting from Ru(III)(trpy)(Cl)(3). The single-crystal X-ray structures of all of the four members (1-4) were determined. The Ru(III)/Ru(II) couple of 1 and 3 appeared at 0.64 and 0.88 V versus the saturated calomel electrode in acetonitrile. The aqua complex 2 exhibited a metal-based couple at 0.48 V in water, and the potential increased linearly with the decrease in pH. The electron-proton content of the redox process over the pH range of 6.8-1.0 was calculated to be a 2e(-)/1H(+) process. However, the chemical oxidation of 2 by an aq Ce(IV) solution in 1 N H(2)SO(4) led to the direct formation of corresponding oxo species [Ru(IV)(trpy)(L)(O)](2+) via the concerted 2e(-)/2H(+) oxidation process. The two successive reductions of the coordinated nitrosyl function of 4 appeared at +0.34 and -0.34 V corresponding to Ru(II)-NO(+) --> Ru(II)-NO* and Ru(II)-NO* --> Ru(II)-NO(-), respectively. The one-electron-reduced Ru(II)-NO* species exhibited a free-radical electron paramagnetic resonance signal at g = 1.990 with nitrogen hyperfine structures at 77 K. The NO stretching frequency of 4 (1945 cm(-1)) was shifted to 1830 cm(-1) in the case of [Ru(II)(trpy)(L)(NO*)](2+). In aqueous solution, the nitrosyl complex 4 slowly transformed to the nitro derivative 3 with the pseudo-first-order rate constant of k(298)/s(-1) = 1.7 x 10(-4). The chloro complex 1 exhibited a dual luminescence at 650 and 715 nm with excited-state lifetimes of 6 and 1 micros, respectively.  相似文献   

13.
The synthesis and photophysical and electrochemical properties of tris(homoleptic) complexes [Ru(tpbpy)3](PF6)2 (1) and [Os(tpbpy)3](PF6)2 (2) (tpbpy = 6'-tolyl-2,2':4',2' '-terpyridine) are reported. The ligand tpbpy is formed as the side product during the synthesis of 4'-tolyl-2,2':6',2' '-terpyridine (ttpy) and characterized by single-crystal X-ray diffraction: monoclinic, P21/c. The tridentate tpbpy coordinates as a bidentate ligand. The complexes 1 and 2 exhibit two intense absorption bands in the UV region (200-350 nm) assignable to the ligand-centered (1LC) pi-pi* transitions. The ruthenium(II) complex exhibits a broad absorption band at 470 nm while the osmium(II) complex exhibits an intense absorption band at 485 nm and a weak band at 659 nm assignable to the MLCT (dpi-pi*) transitions. A red shifting of the dpi-pi* MLCT transition is observed on going from the Ru(II) to the Os(II) complex as expected from the high-lying dpi Os orbitals. These complexes exhibit ligand-sensitized emission at 732 and 736 nm, respectively, upon light excitation onto their MLCT band through excitation of higher energy LC bands at room temperature. The MLCT transitions and the emission maxima of 1 and 2 are substantially red-shifted compared to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2. The emission of both the complexes in the presence of acid is completely quenched indicating that the emission is not due to the protonation of the coordinated ligands. Our results indicate the occurrence of intramolecular energy transfer from the ligand to the metal center. Both the complexes undergo quasi-reversible metal-centered oxidation, and the E1/2 values for the M(II)/M(III) redox couples (0.94 and 0.50 V versus Ag/Ag+ for 1 and 2, respectively) are cathodically shifted with respect to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2 (E1/2 = 1.28 and 1.09 V versus Ag/Ag+, respectively). The tris(homoleptic) Ru(II) and Os(II) complexes 1 and 2 could be used to construct polynuclear complexes by using the modular synthetic approach in coordination compounds by exploiting the coordinating ability of the pyridine substituent. Furthermore, these complexes offer the possibility of studying the influence of electron-withdrawing and electron-donating substituents on the photophysical properties of Ru(II) and Os(II) polypyridine complexes.  相似文献   

14.
The synthesis and characterization of Ru(II) terpyridine complexes derived from 4'-functionalized 2,2':6',2'-terpyridine ligands by a multi step procedure have been described. The complexes are redox-active, showing both metal-centred (oxidation) and ligand-centred (reduction) processes. The antibacterial and antifungal activity of the synthesized ruthenium(II) complexes [Ru(attpy)2](PF6)2 (attpy = 4'-(4-acryloyloxymethylphenyl)-2,2':6',2'-terpyridine); [Ru(mttpy)2](PF6)2 (mttpy = 4'-(4-methacryloyloxymethylphenyl)-2,2':6',2'- terpyridine); [Ru(mttpy)(MeOPhttpy)](PF6)2 (MeOPhttpy = 4'-(4-methoxyphenyl)-2,2':6',2'-terpyridine); and [Ru(mttpy)(ttpy)](PF6)2 (ttpy = 4'-(4-methylphenyl)-2,2':6',2'-terpyridine) were tested against four human pathogens (Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa and Escherichia coli) and five plant pathogens (Curvularia lunata, Fusarium oxysporum, Fusarium udum, Macrophomina phaseolina and Rhizoctonia solani) by the well diffusion method and MIC values of the complexes are reported. A biological study of the complexes indicated that the complexes [Ru(mttpy)2](PF6)2 and [Ru(mttpy)(MeOPhttpy)](PF6)2 exhibit very good activity against most of the test pathogens and their activity is better than those of some of the commercially available antibiotics like tetracycline and the fungicide carbendazim.  相似文献   

15.
An electroactive luminescent switch has been synthesized that comprises a hydroquinone-functionalized 2,2':6',2'-terpyridine ligand coordinated to a ruthenium(II) (4'-phenylethynyl-2,2':6',2'-terpyridine) fragment. The assembly is sufficiently rigid that the hydroquinone-chromophore distance is fixed. Excitation of the complex via the characteristic metal-to-ligand charge-transfer (MLCT) absorption band produces an excited triplet state in which the promoted electron is localized on the terpyridine ligand bearing the acetylenic group. The triplet lifetime in butyronitrile solution at room temperature is 46 +/- 3 ns but increases markedly at lower temperature. Oxidation of the hydroquinone to the corresponding benzoquinone switches on an electron-transfer process whereby the MLCT triplet donates an electron to the quinone. This reaction reduces the triplet lifetime to 190 +/- 12 ps and essentially extinguishes emission. The rate of electron transfer depends on temperature in line with classical Marcus theory, allowing calculation of the electronic coupling matrix element and the reorganization energy as being 22 cm(-1) and 0.84 eV, respectively. The switching behavior can be monitored using luminescence spectroelectrochemistry. The on/off level is set by temperature and increases as the temperature is lowered.  相似文献   

16.
A series of new tridentate polypyridine ligands, made of terpyridine chelating subunits connected to various substituted 2-pyrimidinyl groups, and their homoleptic and heteroleptic Ru(II) complexes have been prepared and characterized. The new metal complexes have general formulas [(R-pm-tpy)Ru(tpy)]2+ and [Ru(tpy-pm-R)2]2+ (tpy = 2,2':6',2' '-terpyridine; R-pm-tpy = 4'-(2-pyrimidinyl)-2,2':6',2' '-terpyridine with R = H, methyl, phenyl, perfluorophenyl, chloride, and cyanide). Two of the new metal complexes have also been characterized by X-ray analysis. In all the R-pm-tpy ligands, the pyrimidinyl and terpyridyl groups are coplanar, allowing an extended delocalization of acceptor orbital of the metal-to-ligand charge-transfer (MLCT) excited state. The absorption spectra, redox behavior, and luminescence properties of the new Ru(II) complexes have been investigated. In particular, the photophysical properties of these species are significantly better compared to those of [Ru(tpy)2]2+ and well comparable with those of the best emitters of Ru(II) polypyridine family containing tridentate ligands. Reasons for the improved photophysical properties lie at the same time in an enhanced MLCT-MC (MC = metal centered) energy gap and in a reduced difference between the minima of the excited and ground states potential energy surfaces. The enhanced MLCT-MC energy gap leads to diminished efficiency of the thermally activated pathway for the radiationless process, whereas the similarity in ground and excited-state geometries causes reduced Franck Condon factors for the direct radiationless decay from the MLCT state to the ground state of the new complexes in comparison with [Ru(tpy)2]2+ and similar species.  相似文献   

17.
A series of binuclear ruthenium(II)-bis(2,2':6',2' '-terpyridine) complexes has been prepared around a central biphenylene unit equipped with a strap of variable length. Partial oxidation forms the mixed-valence complex that displays both ligand-to-metal, charge-transfer, and intervalence charge-transfer (IVCT) transitions in the near-IR region. On the basis of Hush theory, the electronic coupling matrix element for interaction between the metal centers decreases with increasing length of the tethering strap. This effect arises because the strap modulates the torsion angle between the phenyl rings and thereby controls the extent of through-bond electronic coupling. The coupling element favors a maximum for planar geometries and a minimum for orthogonal structures, but the full impact of the torsion angle is not realized due to thermal fluctuations.  相似文献   

18.
Rapid intramolecular energy transfer occurs from a free-base porphyrin to an attached osmium(II) bis(2,2':6',2' '-terpyridine) complex, most likely by way of the F?rster dipole-dipole mechanism. The initially formed metal-to-ligand, charge-transfer (MLCT) excited-singlet state localized on the metal complex undergoes very fast intersystem crossing to form the corresponding triplet excited state ((3)MLCT). This latter species transfers excitation energy to the (3)pi,pi* triplet state associated with the porphyrin moiety, such that the overall effect is to catalyze intersystem crossing for the porphyrin. Interligand electron transfer (ILET) to the distal terpyridine ligand, for which there is no driving force, competes poorly with triplet energy transfer from the proximal (3)MLCT to the porphyrin. Equipping the distal ligand with an ethynylene residue provides the necessary driving force for ILET and this process now competes effectively with triplet energy transfer to the porphyrin. The rate constants for all the relevant processes have been derived from laser flash photolysis studies.  相似文献   

19.
The photophysical properties of osmium(II) bis(2,2':6',2' '-terpyridine) have been recorded over a wide temperature range. An emission band is observed and attributed to radiative decay of the lowest-energy metal-to-ligand, charge-transfer (MLCT) triplet state. This triplet is coupled to two other triplet states that lie at higher energy. The second triplet, believed to be of MLCT character, is reached by crossing a barrier of only 640 cm(-1), but the highest-energy triplet, considered to be of metal-centered (MC) character, is separated from the lowest-energy MLCT triplet by a barrier of 3500 cm(-1). Analysis of the emission spectrum shows that both low- and high-frequency modes are involved in the decay process, while weak emission is seen from the second excited triplet state. The magnitude of the low- and high-frequency modes depends on temperature in fluid solution but not in a KBr disk. Apart from a substantial lowering of the triplet energy, the photophysical properties are relatively insensitive to the presence of an ethynylene substituent at the 4' position of each terpyridine ligand. However, the barrier to reaching the MC triplet is markedly reduced, and the vibrational modes become less sensitive to changes in temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号