首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Solid-phase microextraction (SPME) coupled to LC for the analysis of five diphenylether herbicides (aclonifen, bifenox, fluoroglycofen-ethyl, oxyfluorfen, and lactofen) is described. Various parameters of extraction of analytes onto the fiber (such as type of fiber, extraction time and temperature, pH, impact of salt and organic solute) and desorption from the fiber in the desorption chamber prior to separation (such as type and composition of desorption solvent, desorption mode, soaking time, and flush-out time) were studied and optimized. Four commercially available SPME fibers were studied. PDMS/divinylbenzene (PDMS/DVB, 60 microm) and carbowax/ templated resin (CW/TPR, 50 microm) fibers were selected due to better extraction efficiencies. Repeatability (RSD, < 7%), correlation coefficient (> 0.994), and detection limit (0.33-1.74 and 0.22-1.94 ng/mL, respectively, for PDMS/DVB and CW/TPR) were investigated. Relative recovery (81-104% for PDMS/DVB and 83-100% for CW/TPR fiber) values have also been calculated. The developed method was successfully applied to the analysis of river water and water collected from a vegetable garden.  相似文献   

2.
Huang SD  Huang HI  Sung YH 《Talanta》2004,64(4):887-893
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) for the determination of triazine is described. Carbowax/templated resin (CW/TPR, 50 μm), polydimethylsiloxane/divinylbenzene (PDMS/DVB, 60 μm), polydimethylsiloxane (PDMS, 100 μm), and polyacrylate (PA, 85 μm) fibers were evaluated for extraction of the triazines. CW/TPR and PDMS/DVB fibers were selected for further study. Several parameters of the extraction and desorption procedure were studied and optimized (such as types of fibers, desorption mode, desorption time, compositions of solvent for desorption, soaking periods and the flow rate during desorption period, extraction time, temperature, pH, and ionic strength of samples). Both CW/TPR and PDMS/DVB fibers are acceptable; a simple calibration-curve method based on simple aqueous standards can be used. The linearity of this method for analyzing standard solution has been investigated over the range 5-1000 ng mL−1 for both PDMS/DVB and CW/TPR fibers. All the correlation coefficients in the range 5-1000 ng mL−1 were better than 0.995 except Simazine and Atratone by CW/TPR fiber. The R.S.D.s range from 4.4% to 8.8 % (PDMS/DVB fiber) and from 2.4% to 7.2% (CW/TPR fiber). Method-detection limits (MDL) are in the range 1.2-2.6 and 2.8-3.4 ng mL−1 for the two fibers. These methods were applied to the determination of trazines in environmental water samples (lake water).  相似文献   

3.
Fiber introduction mass spectrometry (FIMS)-a direct coupling of SPME and MS-using selective ion monitoring (SIM) was used to detect and quantify dimethylphthalate (DMP), diethylphthalate (DEP) and dipropylphthalate (DPP) in mineral water. In FIMS, a chromatographic silicone septum is the only barrier between ambient and the high-vacuum mass spectrometer, permitting direct introduction of the SPME fiber into the ionization region of the equipment. After their thermal desorption and ionization and dissociation, the extracted phthalates are detected and quantitated by MS. Three types of SPME fibers were screened for best analyte sorption/desorption behaviors: 100 microm polydimethylsiloxane (PDMS), 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) and 65 microm Carbowax/divinylbenzene (CW/DVB). The PDMS/DVB and CW/DVB fibers were then evaluated for precision, and quantitative figures of merit were assessed for extractions using the PDMS/DVB fiber, which displayed the best overall performance. FIMS with the PDMS/DVB fiber allows simple extraction and MS detection and quantitation of DMP in water with good linearity and precision, and at concentrations as low as 3.6 microg L(-1). The LD and LQ of FIMS are below the maximum phthalate concentration allowed by the USEPA for drinking water (6 microg L(-1)).  相似文献   

4.
The aim of this study was the optimization of headspace SPME conditions for trapping diterpenes present in frankincense (olibanum). Diterpenes like cembrenes or incensole and its derivatives are characteristic of olibanum. So in order to detect by SPME the occurrence of olibanum in archeological objects, it appears essential to have the best extraction conditions for these diterpenes that will be in very small quantities. Both sampling time and extraction temperature were studied and five fiber coatings were tested: polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB), carboxen/polydimethylsiloxane (CAR/PDMS), divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) and carbowax/divinylbenzene (CW/DVB). The PDMS/DVB fiber was found to be the most efficient for trapping olibanum characteristic diterpenes, with a sampling time of 1 h and a sampling temperature of 80 degrees C.  相似文献   

5.
Solid-phase microextraction (SPME) was evaluated for the detection and quantification of the gas-phase dicarbonyls, glyoxal (GLY) and methylglyoxal (MGLY). Additionally, polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB), and carbowax/divinylbenzene (CW/DVB) fibers were tested to determine the optimum fiber for detection of these species. GLY and MGLY were derivatized with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride (PFBHA), extracted with SPME from headspace or bag chamber and then analyzed by GC/MS. The PDMS/DVB SPME fiber for on-fiber derivatization and subsequent sampling for gas-phase methylglyoxal provided the optimum combination of analytical reproducibility and sensitivity. Linearity of the calibration curve was achieved across a range of 11-222 microg/m(3) (4-75 ppb).  相似文献   

6.
Traditional simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) techniques were compared for their effectiveness in the extraction of volatile flavor compounds from various mustard paste samples. Each method was used to evaluate the responses of some analytes from real samples and calibration standards in order to provide sensitivity comparisons between the two techniques. Experimental results showed traditional SDE lacked the sensitivity needed to evaluate certain flavor volatiles, such as 1,2-propanediol. Dramatic improvements in the extraction ability of the SPME fibers over the traditional SDE method were noted. Different SPME fibers were investigated to determine the selectivity of the various fibers to the different flavor compounds present in the mustard paste samples. Parameters that might affect the SPME, such as the duration of absorption and desorption, temperature of extraction, and the polarity and structure of the fiber were investigated. Of the various fibers investigated, the PDMS–DVB fiber proved to be the most desirable for these analytes.  相似文献   

7.
This paper describes the use of headspace solid-phase microextraction (SPME) combined with gas chromatography to identify the signature odors that law enforcement-certified detector dogs alert to when searching for drugs, explosives, and humans. Background information is provided on the many types of detector dog available and specific samples highlighted in this paper are the drugs cocaine and 3,4-methylenedioxy-N-methylamphetamine (MDMA or Ecstasy), the explosives TNT and C4, and human remains. Studies include the analysis and identification of the headspace "fingerprint" of a variety of samples, followed by completion of double-blind dog trials of the individual components in an attempt to isolate and understand the target compounds that dogs alert to. SPME–GC/MS has been demonstrated to have a unique capability for the extraction of volatiles from the headspace of forensic specimens including drugs and explosives and shows great potential to aid in the investigation and understanding of the complicated process of canine odor detection. Major variables evaluated for the headspace SPME included fiber chemistry and a variety of sampling times ranging from several hours to several seconds and the resultant effect on ratios of isolated volatile components. For the drug odor studies, the CW/DVB and PDMS SPME fibers proved to be the optimal fiber types. For explosives, the results demonstrated that the best fibers in field and laboratory applications were PDMS and CW/DVB, respectively. Gas chromatography with electron capture detector (GC/ECD) and mass spectrometry (GC/MS) was better for analysis of nitromethane and TNT odors, and C-4 odors, respectively. Field studies with detector dogs have demonstrated possible candidates for new pseudo scents as well as the potential use of controlled permeation devices as non-hazardous training aids providing consistent permeation of target odors.  相似文献   

8.
Flos Chrysanthemi Indici is a common traditional Chinese medicine (TCM). In this paper, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was developed for quality assessment of Flos Chrysanthemi Indici from different growing areas in China. SPME parameters such as extraction fibers, extraction temperature, extraction time and sample mass were investigated to achieve identical results to those obtained by the steam distillation (SD). The selected SPME conditions were as follows: SPME fiber coated with 65-microm PDMS/DVB, extraction temperature of 60 degrees C, extraction time of 30 min and sample mass of 1.0 g. Furthermore, four active compounds (eucalyptol, camphor, borneol and bornyl acetate) presented in the TCM were applied to evaluating the quality of Flos Chrysanthemi Indici from 20 various areas. The quality assessment was successfully performed to compare the similarity value (S) between different sample vector of Flos Chrysanthemi Indici and the standard profile vector (SPV). The results showed that the proposed HS-SPME-GC-MS was an alternative technique for quality assessment of Flos Chrysanthemi Indici samples.  相似文献   

9.
Solid-phase microextraction (SPME) is a rapid and simple analytical technique which uses coated fused-silica fibers to extract analytes from aqueous samples. This study develops a method of SPME analysis for seven pyrethroids, including fenpropathrin, lambda-cyhalothrin, deltamethrin, fenvalerate, permethrin, tau-fluvalinate and bifenthrin in groundwater samples using high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-LC-PIF-FD). To perform the SPME, a 60 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used for the extraction of the pesticides from groundwater samples. The main factors affecting the SPME process, such as extraction time, stirring rate, extraction temperature, pH and the desorption process were studied. The use of photochemically induced fluorescence for detection improved sensitivity and selectivity. The limits of quantification (LOQs) obtained in the matrix, with respect to EURACHEM Guidance, varied between 0.03 and 0.075 microgL(-1). Relative recoveries ranged from 92 to 109% and relative standard deviations values ranged from 2 to 9%.  相似文献   

10.
A new analysis method to detect carbamates and phenylurea pesticide residues in fruit juices was developed using solid-phase microextraction (SPME) coupled with liquid chromatography-single quadrupole mass spectrometry (LC/MS) and liquid chromatography-quadrupole ion trap mass spectrometry (LC/QIT-MS). The pesticide residues present in watery matrices as fruit juices were extracted using three types of fibers: 50-microm Carbowax/templated resin (CW/TPR), 60-mum poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB) and 85-microm polyacrylate. The different extraction conditions were evaluated choosing as the best parameters 90 min (time), 20 degrees C (temperature) and 1 ml (volume). After extraction, the desorption (in a static mode) was performed in the specific interface chamber SPME/HPLC, previously filled with 70% methanol and 30% water. The best recoveries, evaluated at two fortification levels (0.2 and 0.5 mg kg(-1)) in fruit juices, were obtained using PDMS/DVB and CW/TPR fibers, and ranged from 25 to 82% (monolinuron, diuron and diethofencarb), with relative standard deviations (RSDs) from 1 to 17%. All the limits of quantification (LOQs) were in the range of 0.005-0.05 microg ml(-1) and, in any case, equal to, or lower than, maximum residue limits (MRLs) established by Italian and Spanish legislations. The mass spectrometry analyses were carried out using an electrospray ionization (ESI) source operating in the positive mode both for single quadrupole and for QIT mass analysers, operating in selected ion monitoring (SIM) and in multiple reaction monitoring (MRM) modes, respectively. The proposed new method can be applied to the determination of selected pesticides in real samples of fruit juices.  相似文献   

11.
In order to develop a valuable method for accurate screening of biogenic emissions from undisturbed living plants or for plant-insect interactions, solid-phase microextraction (SPME) has been combined with dynamic branch enclosure cuvettes and enantioselective GC/MS. The study was conducted at Hyyti?l? forest station, Finland within a boreal coniferous forest dominated by Scots pine (Pinus sylvestris). The SPME method was optimized for monoterpenes by testing three fibre coatings: polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB) and carbowax/divinylbenzene (CW/DVB) and determining the optimum exposure time. The PDMS/DVB fibre was found to be most suitable and was used to characterize emissions of P. sylvestris enclosed in dynamic branch enclosure cuvettes by exposure for 1 min followed by desorption and separation on a beta-cyclodextrin column installed in the GC/MS oven. Dynamic cuvette measurements have been compared to static headspace SPME samples of the emission of detached needles from the same tree species and a portable dynamic air sampler (PDAS)-SPME for sampling the ambient air around the same trees. The method developed has allowed an accurate characterization of the gaseous emission of P. sylvestris and the identification of 17 isoprenoids comprising chiral and achiral monoterpenes. Two chemotypes of Scots pine can be differentiated through their emission of (+)-delta-3-carene. While SPME-dynamic cuvette, portable dynamic sampler and absorbent results agreed well, significant differences in enantiomeric ratios were observed in natural emissions and those of damaged leaves. Therefore, in enantioselective studies of plant-insect and/or plant-plant interactions, the two enantiomers of a given monoterpene should be treated as two separate substances.  相似文献   

12.
Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber‐coating material for the solid‐phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene‐coated fiber coupled with high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05‐0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0 ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene‐coated fiber showed higher extraction efficiency.  相似文献   

13.
本文对葫芦脲(CB)作为一种新型固相微萃取(SPME)涂层材料进行了研究并用于中药白豆蔻的气相色谱分析测定.本文采用的CB SPME涂层制备方法简便、快速,并具有良好的热稳定性和重复性.CB[6]SPME萃取得到的主要成分与水蒸气蒸馏(SD)法基本一致,并且CB[6]SPME对色谱后流出的目标成分的相对峰面积比明显高于SD法和商品SPME萃取材料PDMS/CAR和PDMS/DVB,这可能是由于葫芦脲的特殊分子结构及其与组分分子间选择性作用所致.葫芦脲作为一种新型SPME涂层材料具有很大的研究潜力和应用前景.  相似文献   

14.
In this work, the analysis of a group of four fungicides (pyrimethanil, nuarimol, procymidone and cyprodinil) and one insecticide (pirimicarb) by micellar electrokinetic chromatography (MEKC) with UV detection using the on-line preconcentration strategy called reversed electrode polarity stacking mode (REPSM) is proposed. After optimisation, an adequate separation electrolyte for the separation and stacking of these pesticides was obtained which consisted of 100 mM borate, 60 mM sodium dodecyl sulphate (SDS), at pH 9.0 and 2% 2-propanol. The use of this running buffer together with the REPSM preconcentration method provided limits of detection (LODs) between 38.3 and 241 microg/L. In order to apply the developed methodology for the analysis of these pesticides in wine samples, several off-line preconcentration strategies (mainly, solid-phase extraction, SPE, and solid-phase microextraction, SPME) were tested. Although the use of a SPE procedure, optimized in this work for water samples, using Oasis HLB cartridges, provided mean recovery values between 79 and 100% for spiked water samples, it could not be applied to the extraction of these pesticides from wine samples due to high interference from the sample matrix. However, the use of a SPME procedure using polydimethylsiloxane/divynilbenzene (PDMS/DVB) fibers allowed the selective extraction of four of the five pesticides which could be perfectly determined. The final combination of the off-line SPME and on-line REPSM preconcentration strategies allowed obtaining LODs between 17.6 and 32.3 microg/L.  相似文献   

15.
A method involving headspace-solid phase micro-extraction (HS-SPME), gas chromatography with flame ionization detection (GC-FID) and gas chromatography with mass spectrometry (GC-MS) was developed and optimized to investigate the volatile composition of Capsicum chili peppers. Five SPME fibers were tested for extraction: carboxen/polydimethylsiloxane (CAR/PDMS-75μm), polydimethylsiloxane (PDMS-100μm), divinylbenzene/polydimethylsiloxane (DVB/PDMS-65μm), carbowax/divinylbenzene (CW/DVB-70μm), and divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS-50/30μm), the last of which was shown to be the most efficient fiber to trap the volatile compounds. Optimization of the extraction conditions was carried out using multivariate strategies such as factorial design and response surface methodology. Eighty three compounds were identified by GC-MS when using the optimized extraction conditions, the majority of which were esters.  相似文献   

16.
Solid-phase microextraction (SPME) fibers with supported fluorinated glassy carbon are demonstrated for the first time. Oligo[1,3-dibutadiynylene-1,3-(tetrafluoro)phenylene] was synthesized and heated to temperatures that varied from 200 to 1000 degrees C to produce the fluorinated glassy carbon. The extent of graphitization of the glassy carbon increased as the processing temperature increased. The fluorinated glassy carbon selectively extracted monohalogenated benzenes from an aqueous solution when compared to the extraction of toluene. The selectivity increased in the order of phi-F < phi-Cl < phi-Br < phi-I. The selectivity for the halogenated compounds was greatest for the fluorinated glassy carbon phase processed at temperature below approximately 400 degrees C. Preliminary studies on the retention mechanism of the LTGC phase show that dispersive interactions are very important to the retention of halocarbons on the fluorinated LTGC. Finally, the selectivity of the fluorinated LTGC for halogenated compounds was compared to that of commercially available SPME fibers, such as poly(dimethylsiloxane), poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB), and poly(dimethylsiloxane)/Carboxen (PDMS/Carboxen) fibers. As expected the fluorinated LTGC was more selectivity for the halogenated compounds. Interestingly the order of the increase in selectivity is opposite when comparing the fluorinated-LTGC and the three commercial fibers. A decrease in selectivity was observed going from fluorobenzene to iodobenzene using PDMS/DVB and PDMS/Carboxen fibers. While for the pure PDMS phase, there is a slight increase in selectivity from fluorobenzene to chlorobenzene but the remaining trend shows little change for bromobenzene and iodobenzene.  相似文献   

17.
Novel molecularly imprinted polymer (MIP)-coated fibers for solid-phase microextraction (SPME) fibers were prepared by using linezolid as the template molecule. The characteristics and application of these fibers were investigated. The polypyrrole, polythiophene, and poly(3-methylthiophene) coatings were prepared in the electrochemical polymerization way. The molecularly imprinted SPME coatings display a high selectivity toward linezolid. Molecularly imprinted coatings showed a stable and reproducible response without any influence of interferents commonly existing in biological samples. High-performance liquid chromatography with spectroscopic UV and mass spectrometry (MS) detectors were used for the determination of selected antibiotic drugs (linezolid, daptomycin, amoxicillin). The isolation and preconcentration of selected antibiotic drugs from new types of biological samples (acellular and protein-free simulated body fluid) and human plasma samples were performed. The SPME MIP-coated fibers are suitable for the selective extraction of antibiotic drugs in biological samples.  相似文献   

18.
A method was developed for the determination of trichloroanisole, tribromoanisole and pentachloroanisol by solid-phase microextraction and gas chromatography in paper samples (Kraft liner, Test liner and Miolo). Four commercial SPME fibers were evaluated: Polydimethylsiloxane (PDMS), Polyacrylate (PA), Carbowax/Divinylbenzene (CW/DVB) and Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS). DVB/CAR/PDMS gave the best results and was therefore selected. Other variables involved in the extraction procedure were studied and optimized, such as: sample volume, salting-out effect, temperature and extraction time, effect of organic solvent and previous sample preparation. Optimum conditions were obtained using 20 mL of sample with 5 mol L−1 NaCl in a 40 mL vial, extraction temperature of 70 °C and sonication and extraction time of 30 and 40 min, respectively. Detection limits ranged from 0.43 to 1.32 ng g−1 for all analytes. Recoveries between 70 and 100% were obtained and relative standard deviation was below 10% for all compounds.  相似文献   

19.
Solid-phase microextraction coupled to liquid chromatography and mass spectrometry (SPME-LC-MS) was used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. SPME was performed by direct extraction on a PDMS/DVB (60 microm) coated fiber, employing a stirring rate of 1200 rpm for 30 min, pH 11.0, and temperature of 30 degrees C. Drug desorption was carried out by exposing the fiber to the liquid chromatography mobile phase for 20 min, using a labmade SPME-LC interface at 50 degrees C. The main variables experimentally influencing LC-MS response were evaluated and mathematically modeled. A rational optimization with fewer experiments was achieved using a factorial design approach. The constructed empirical models were adjusted with 96-98% of explained deviation allowing an adequate data set comprehension. The chromatographic separation was realized using an RP-18 column (150 mm x 2.1 mm, 5 microm particles) and ammonium acetate buffer (0.01 mol/l, pH 5.50) : acetonitrile (50 : 50 v/v) as mobile phase. Low detection levels were achieved with electrospray interface (0.1 ng/ml). The developed method showed specificity, linearity, precision, and limit of quantification adequate to assay tricyclic antidepressant drugs in plasma.  相似文献   

20.
A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC-(IT)MS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane) (PDMS), poly(acrylate) (PA), Carboxen-poly(dimethylsiloxane) (CAR/PDMS), Carbowax-divinylbenzene (CW/DVB) and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 microm CAR/PDMS fibre during headspace extraction at 40 degrees C with stirring at 750 rpm for 60 min, after saturating the samples with salt. The optimised methodology was then applied to investigate the volatile composition profile of three Scotch whisky samples--Black Label, Ballantines and Highland Clan. Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with "fruity" odours. Qualitatively, the isoamyl acetate, with "banana" aroma, was the most interesting. Quantitatively, significant components are ethyl esters of caprilic, capric and lauric acids. The highest concentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号