首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New vic-dioxime ligands and their CuII, CoIII, NiII and VOIV complexes have been prepared and characterized by elemental analyses, i.r. and u.v. spectra, magnetic moments and molar conductance data. The CoIII complexes are diamagnetic. The 1H- and 13C-n.m.r. and g.c./m.s. spectra of the vic-dioxime ligands and their CoIII complexes were recorded. The compounds are all non-electrolytes.  相似文献   

2.
Donor group functionalized N-heterocyclic carbenes (NHC) are an important class of ligands used in transition metal complex chemistry. Herein, the growing field of sulfur-functionalized NHC compounds and their respective transition metal complexes are described comprehensively. The sulfur-functionalized NHC compounds are categorized by functional groups such as thiolate, thioether, sulfoxide, thiophene, sulfonate and sulfonamide. Chiral compounds and the hemilabile behaviour of sulfur-functionalized NHC compounds are reported.  相似文献   

3.
Thiosemicarbazide, phosphoric acid and amidoxime derivatives of chitosan were synthesized and their ability for metal ion adsorptions was discussed. Thiosemicarbazide derivative, synthesized by treating chlorodeoxychitosan with ammonium thiocyanate followed by treatment with hydrazine, was considered to have cross-linked network structure. Phosphoric acid derivative containing both N-phosphonic acid and phosphoric acid groups was synthesized by cyanoethylation of chitosan using acrylonitrile, followed by treatment with hydroxylamine. These derivatives were found to adsorb effectively infinitesimal concentration (ppb order) of uranyl ion in seawater. Stability constants of some metal ion chitosan chelates were determined. To improve the selectivity in the adsorption of metal ions, a novel method utilizing metal ion as a template was adopted, and the results are discussed.  相似文献   

4.
The Karl Fischer reagent reacts with many low valent transition metal complexes to bring about oxidation of the metal. The reaction can be used for the oxidimetric determination of these complexes in solution and must be taken into account when PIII ligands are determined in low valent metal complexes.  相似文献   

5.
Summary 3,4-Dicyano-5-aminopyrazole, H3,4(CN)25NH2pz (L) reacts either with anhydrous MCl2 or with [M(PPh3)2Cl2] to yield ML4Cl2 complexes (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd or Hg), whose monomeric and covalent natures have been confirmed by their solubility in most non-polar solvents and their low electrical conductivities. The bonding mode of substituted pyrazole is inferred from the position of the (C-N) band in the i.r. spectra. The electronic spectra and the magnetic moments of these compounds were recorded.  相似文献   

6.
Template condensation of benzidine, formaldehyde, ethylenediamine or 1,3-diaminopropane, metal salt and 1-phenyl-1,3-butanedione or 2,3-butanedione in a 1:4:2:2 molar ratio results in the formation of two new series of binuclear pentaaza macrocyclic complexes: dichloro[1,1-phenylbis(7-methyl-9-phenyl-1,3,6,10,13-pentaazacyclotetradeca-6,9-diene) metal(II)], [M2LCl4] (M = CoII, CuII, FeIII and ZnII) and dichloro[1,1-phenylbis(8,9-dimethyl-1,3,7,10,14-pentaazacyclopentadeca-7,9-diene) metal(II)], [M2LCl4] (M = NiII, CoII, CuII and CdII). Both series were characterized by i.r., 1H-n.m.r., u.v.–vis. spectral studies, conductivity and magnetic susceptibility measurements.  相似文献   

7.
8.
A new series of metal complexes of Pd(II), Cd(II) and Cu(II, I) of polydentate Schiff base ligand (H2L), namely ((Z)-2-(phenylamino)-N'-(thiophen-2-ylmethylene) acetohydrazide) have been prepared. The ligand and its metal complexes have been characterized based on various physicochemical studies as elemental analyses, molar conductance, spectral (UV–Vis, MS, IR, 1H NMR, 13C NMR and XRD), magnetic moment measurements and thermal studies (TG, DTG). In the view of previous studies, the ligand (H2L) acts as polydentate one and coordinates with metal ions to form all metal complexes. The kinetic and thermodynamic parameters of decomposition process (ΔG, ΔH, ΔS) were calculated. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program. The calculations are performed to obtain the optimized molecular geometry. The antibacterial study of the selected compounds was assayed against two pathogenic bacteria. Moreover, the complexes (Cu II, I), Cd(II), Pd(II)) and the ligand revealed excellent antioxidant properties and could be useful in fighting the free radicals which occur in close connection with cancerous cells. It was remarkable that the two complexes (Cu II, I) demonstrated stronger antioxidant effects than their parent compounds. It is clear that the new complexes are good active compounds for use in a variety of applications.  相似文献   

9.
10.
Summary Two new quadridentate sulphur-nitrogen chelating agents have been prepared and characterized. These ligands yield stable complexes of general formulae, M(ONNS)·xH2O (M=Ni, Cu, Zn, Cd, Pd and Pt; ONNS–2=ligand dianion; x=0, 1 or 2) and M(ONNS)X (M=Co or Fe; X=Cl or AcO). The nicke(II) complexes are diamagnetic and squareplanar. Based on magnetic and spectral data a square-planar structure is also assigned to the copper(II) complexes. The iron(III) complexes, Fe(ONNS)Cl are high-spin and five-coordinate. Magnetic and spectral evidence support an octahedral structure for the cobalt(III) complex, Co(ONNS)OAc.  相似文献   

11.
The equilibrium geometry, relative energies, normal mode frequencies, and electron and spin density distributions for first-row transition metal porphyrins M(P) (M is a transition metal in the oxidation state +2, P = C20H12N4) and their five-and six-coordinate carbonyl complexes M(P)CO and M(P)(CO)(AB) (AB = CO, CN?, CS) in different spin states have been calculated by the density functional theory B3LYP method with the 6-31G and 6-31G* basis sets. The energies of binding of the CO group to M(P) molecules D(M-CO) have been estimated. The calculated properties change as a function of the metal, the number of carbonyl groups (shown for Fe(P) as an example), and the multiplicity. Calculations show that, for five-coordinate complexes M(P)CO with M = Ti and V, high-spin states and significant D(M-CO) energies are typical. For Fe(P)CO, a singlet with a small D(M-CO) energy is preferable. For Cr(P)CO and Mn(P)CO (which also have small D(M-CO) energies), the states with different spins, which strongly differ in geometry and electronic structure, are close in energy, within 0.1–02. eV. The energy of binding of CO to M(P)CO (M = Cr, Mn, Fe) is considerably higher than the energy of binding of CO to M(P), which is evidence that the transformation of five-coordinate metalloporphyrins into six-coordinate ones is energetically favorable. The behavior of the D(M-CO) energies is interpreted using a qualitative model that considers not only the effects of participation (or nonparticipation) of “active” $ d_{x^2 - y^2 } The equilibrium geometry, relative energies, normal mode frequencies, and electron and spin density distributions for first-row transition metal porphyrins M(P) (M is a transition metal in the oxidation state +2, P = C20H12N4) and their five-and six-coordinate carbonyl complexes M(P)CO and M(P)(CO)(AB) (AB = CO, CN, CS) in different spin states have been calculated by the density functional theory B3LYP method with the 6-31G and 6-31G* basis sets. The energies of binding of the CO group to M(P) molecules D(M-CO) have been estimated. The calculated properties change as a function of the metal, the number of carbonyl groups (shown for Fe(P) as an example), and the multiplicity. Calculations show that, for five-coordinate complexes M(P)CO with M = Ti and V, high-spin states and significant D(M-CO) energies are typical. For Fe(P)CO, a singlet with a small D(M-CO) energy is preferable. For Cr(P)CO and Mn(P)CO (which also have small D(M-CO) energies), the states with different spins, which strongly differ in geometry and electronic structure, are close in energy, within 0.1–02. eV. The energy of binding of CO to M(P)CO (M = Cr, Mn, Fe) is considerably higher than the energy of binding of CO to M(P), which is evidence that the transformation of five-coordinate metalloporphyrins into six-coordinate ones is energetically favorable. The behavior of the D(M-CO) energies is interpreted using a qualitative model that considers not only the effects of participation (or nonparticipation) of “active” , and , d xz , and d yz AO in bonding of M to the P ring and axial ligands, but also the fraction of the total bond energy consumed for the preparation (promotion) of those “valence states” of the M(P) molecules that are realized in M(P)CO and M(P)(CO)(AB) complexes. For the series of compounds Fe(P)(CO)2 − Fe(P)(CO)(CS) − Fe(P)(CS)2 − Fe(P)(CO)(CN) in the singlet, triplet, and ionized states, the trans influence of axial ligands in low-spin metalloporphyrins is shown to follow the same qualitative scheme as is typical of octahedral transition metal complexes: in mixed-ligand complexes (as compared to the symmetric ones), the stronger bond becomes shorter and even stronger, while the weaker bond becomes longer and even weaker. It is assumed that the same scheme will persist for more complicated low-spin six-coordinate metalloporphyrins in the states with the vacant AO and occupied d xz and d xz AOs involved in bonding with both axial ligands with the filled shell. Original Russian Text ? O.P. Charkin, A.V. Makarov, and N.M. Klimenko, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 5, pp. 781–794.  相似文献   

12.
A novel series of macrocyclic complexes of the type [M(C18H14N10S2)X2]; where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl?, NO3?, CH3COO? has been synthesized by [2+2] condensation of thiocarbohydrazide and isatin in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR and infrared spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antimicrobial activities against some Gram-positive bacteria viz.Staphylococcus aureus, Bacillus subtilis, and some Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and some fungal strains Aspergillus niger, Aspergillus flavus (molds), Candida albicans, Saccharomyces cerevisiae (yeasts). The results obtained were compared with standard antibiotic: Ciprofloxacin and the standard antifungal drug: Amphotericin-B.  相似文献   

13.
4-(4-ethoxy-phenylhydrazono)-1-phenyl-3-methyl-1H-pyrazolin-5(4H)-one (5a) (H-EMPhP) as ligand and its Cu(II), Co(II) and Ni(II) complexes 4(a-c) were synthesized and characterized by their thermal and spectral properties. The azocoupling product (H-EMPhP), able of azo-hydrazone tautomerism 5(a-d), act as a bidentate ligand involving in coordination the azogroup nitrogen of its common anion (7) and the oxygen atom that is bound to the pyrazole ring of the mentioned anion (7).  相似文献   

14.
Three compounds, [AsMo8V6O42][Cu(2,2?-bpy)2]2[Cu(2,2?-bpy)]·4H2O (1), [PMo8V6O42][Cu(2,2?-bpy)2]2[Cu(2,2?-bpy)]·3H2O (2) and [PMo8V6O42][Cu(2,2?-bpy)2]2[Cu(2,2?-bpy)]·3.5H2O (3), have been synthesized under hydrothermal conditions and characterized by IR, UV–vis, XRD, TG, elemental analysis, and X-ray diffraction analysis. Single-crystal X-ray structure analysis reveals that 1 and 2 are isostructural and isomorphous, whereas 2 and 3 are polymorphs. Polymorphs of 1 have not been synthesized yet. The mixed-valent transition metal ion in 1–3 has been further confirmed by TG analyses. Catalytic properties of 1 and 2 have also been studied.  相似文献   

15.
Chlorodivinylborane (I) prepared in situ from boron trichloride and dimethydivinyltin, reactions under photochemical conditions with ironpentacarbonyl and cyclopentadienyldicarbonylcobalt to give (η5-chlorodivinylborane)tricarbonyliron (II) and (η5-chlorodivinylborane)cyclopentadienylcobalt (III), respectively, in high yield. Complexes II and III readily undergo base-assisted nucleophilic substitution at boron.  相似文献   

16.
《Liquid crystals》1999,26(5):663-668
Ten novel long-chain-substituted porphyrin derivatives, tetrakis (3,4-dialkoxyphenyl)porphyrins [abbreviated as (CnO8)TPPM: M=H2, n=4, 6, 8, 10, 12, 16, 18; M=Cu, n=8, 12 and (2EtC6O)8TPPH2], were synthesized and their mesomorphism was investigated. Among them four derivatives, (CnO)8TPPH2(n=12, 16, 18) and (C12O)8TPPCu, exhibited a monotropic discotic lamellar (DL) mesophase.  相似文献   

17.
《印度化学会志》2023,100(5):100981
In this study, in order to obtain biologically active compounds, a series of anti-glyoximehydrazone ligands bearing vic-dioxime, hydrazone, and pyrazole moieties and their (O•••H–O) bridged nickel(II), cobalt(II) and copper(II) metal complexes were prepared. Further, the molecular docking studies were carried out on those ligands and their nickel(II), cobalt(II) and copper(II) metal complexes to analyze the interaction with EGFR Kinase domain complexed with tak-285 (PDB ID: 3POZ) and human androgen receptor T877A mutant (PDB ID:2OZ7). In addition, the compounds were optimized by using B3LYP/6-311G+(d,p) level of Density Functional Theory (DFT) to evaluate the HOMO–LUMO contours and quantum chemical parameters. Also, bioactivity analysis were performed.Metal complexes had higher binding affinities against 3POZ and 2OZ7. The most promising compounds for 3POZ were nickel(II) and copper(II) metal complexes. However, for the 2OZ7 target receptor, cobalt(II) and copper(II) metal complexes were the possible hit compounds. Furthermore, cobalt(II) metal complex of ligand two was found to be the most reactive one among others. Moreover, it had the highest ω which is related to a potent higher electrophilic character. It was determined that all the compounds had moderate bioactivity.In conclusion, nickel(II), cobalt(II), and copper(II) complexes could be powerful hit compounds for anti-cancer drug discovery studies.  相似文献   

18.
Recently discovered catalytic reactions with ruthenium and lanthanide metal complexes have extended the scope of 1-alkynes as useful reagents. The specific formation of aryl-substituted (Z)-1,3-enzymes via the dimerization of HC(triple bond) CR(1) (R(1) = aryl) has been attained using dimeric lanthanide complexes, the catalytic activity of which appears to be unaffected by time. The dimerization of HC(triple bond) CR(2) (R(2) = t-Bu, SiMe(3)) catalyzed by Ru(cod)(cot)/PR(3) or RuH(2)(PPh(3))(3) produces a good yield of butatrienes (Z)R(2)CH=C=C=CHR(2) with a high degree of selectivity. Under certain conditions, HC(triple bond) C=SiMe(3) dimerizes to yield exclusively (Z)-M(3)Si-C(triple bond) C-CH=CH-SiMe(3). The hydration of HC(triple bond)CR(3) (R(3) = alkyl, aryl) catalyzed by RuCl(2)/PR'(3) or CpRuCl(PR"(3))(2) has realized the first example of anti-Markovnikov regioselectivity in an addition reaction of water that produces aldehydes R(3)CH(2)bond;CHO. The application of this reaction to propargylic alcohols has lead to their formal isomerization to alpha,beta-unsaturated aldehydes. In contrast, the addition of amines R(4)bond;NH(2) (R(4) = aryl) to HCtbond;CR(5) (R(5) = alkyl, aryl) conforms to Markovnikov's rule to produce ketimines R(5)bond;(C=NR(4))bond;CH(3) when catalyzed by a Ru(3)(CO)(12)/additive. Since the reaction can be performed in air without the need for any solvents, it enables the practical synthesis of aromatic ketimines, which are difficult to prepare by conventional methods. The synthesis of indoles using deactivated anilines is one practical application of this reaction. The mechanisms of some of these reactions have been analyzed in detail with the aid of theoretical calculations.  相似文献   

19.
The synthesis of the ruthenium σ-acetylides (η5-C5H5)L2Ru-CC-bipy (4a, L = PPh3; 4b, L2 = dppf; bipy = 2,2′-bipyridine-5-yl; dppf = 1,1′-bis(diphenylphosphino)ferrocene) is possible by the reaction of [(η5-C5H5)L2RuCl] (1) with 5-ethynyl-2,2′-bipyridine (2a) in the presence of NH4PF6 followed by deprotonation with DBU. Heterobimetallic Fc-CC-NCN-Pt-CC-R (10a, R = bipy; 10b, R = C5H4N-4; Fc = (η5-C5H5)(η5-C5H4)Fe; NCN = [1,4-C6H2(CH2NMe2)2-2,6]) is accessible by the metathesis of Fc-CC-NCN-PtCl (9) with lithium acetylides LiCC-R (2a, R = bipy; 2b, R = C5H4N-4).The complexation behavior of 4a and 4b was investigated.Treatment of these molecules with [MnBr(CO)5] (13) and {[Ti](μ-σ,π-CCSiMe3)2}MX (15a, MX = Cu(NCMe)PF6; 15b, MX = Cu(NCMe)BF4; 16, MX = AgOClO3; [Ti] = (η5-C5H4SiMe3)2Ti), respectively, gave the heteromultimetallic transition metal complexes (η5- C5H5)L2Ru-CC-bipy[Mn(CO)3Br] (14a: L = PPh3; 14b: L2 = dppf) and [(η5-C5H5)L2Ru-CC-bipy{[Ti](μ-σ,π-CCSiMe3)2}M]X (17a: L = PPh3, M = Cu, X = BF4; 17b: L2 = dppf, M = Cu, X = PF6; 18a: L = PPh3, M = Ag, X = ClO4; 18b: L2 = dppf, M = Ag, X = ClO4) in which the appropriate transition metals are bridged by carbon-rich connectivities.The solid-state structures of 4b, 10b, 12 and 17b are reported. The main structural feature of 10b is the square-planar-surrounded platinum(II) ion and its linear arrangement. In complex 12 the N-atom of the pendant pyridine unit coordinates to a [mer,trans-(NNN)RuCl2] (NNN = 2,6-bis-[(dimethylamino)methyl]pyridine) complex fragment, resulting in a distorted octahedral environment at the Ru(II) centre. In 4b a 1,1′-bis(diphenylphosphino)ferrocene building block is coordinated to a cyclopentadienylruthenium-σ-acetylide fragment. Heterotetrametallic 17b contains a (η5-C5H5)(dppf)Ru-CC-bipy unit, the bipyridine entity of which is chelate-bonded to [{[Ti](μ-σ,π-CCSiMe3)2}Cu]+. Within this arrangement copper(I) is tetra-coordinated and hence, possesses a pseudo-tetrahedral coordination sphere.The electrochemical behavior of 4, 10b, 12, 17 and 18 is discussed. As typical for these molecules, reversible oxidation processes are found for the iron(II) and ruthenium(II) ions. The attachment of copper(I) or silver(I) building blocks at the bipyridine moiety as given in complexes 17 and 18 complicates the oxidation of ruthenium and consequently the reduction of the group-11 metals is made more difficult, indicating an interaction over the organic bridging units.The above described complexes add to the so far only less investigated class of compounds of heteromultimetallic carbon-rich transition metal compounds.  相似文献   

20.
Summary New CuII, CoII, NiII, CdII, ZnII, HgII, PdII and UO 2 II complexes of the Schiff base ligand (FBz) formed by condensation of fluorenone withS-benzyldithiocarbazate have been prepared and characterized by elemental analysis, magnetic and spectroscopic measurements. The Cu(FBz)2(Cl)2 complex is paramagnetic. The Ni(FBz-H)2 complex is diamagnetic, four-coordinate and square planar. The CoII ion is oxidized in the presence of the Schiff base with the concomitant formation of CoIII complex of empirical formulae Co(FBz)Cl3OH2. The ligand was tested as a corrosion inhibitor for copper. Inhibition efficiency was calculated and the limiting concentration of FBz to give maximum efficiency was 10–3 mol dm–3 at 25°C. The polarographic reduction of FBz was investigated in Britton-Robinson buffer solutions of pH 3–10. The polarograms at dme indicated that the depolarizer is reduced through two two-electron irreversible diffusion-controlled waves. The mechanistic pathway of the electrode reaction is commensurate with this result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号