首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
For the first time chemical derivatization of isomeric drug glucuronides with 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC) has been successfully applied as a tool for determining the site of conjugation. This provides a way to differentiate between glucuronide isomers containing aliphatic and phenolic hydroxyl groups. The analyses were performed with liquid chromatography/electrospray ion trap mass spectrometry (LC/ESI-MSn). DMISC has previously been shown to react selectively with phenols in estrogens, thus improving sensitivity in ESI-MS. The model compounds selected for this study were commercially available standards of formoterol, morphine, morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G). Formoterol glucuronides were produced with an enzymatic method in house. Both formoterol and morphine possess one phenolic and one aliphatic hydroxyl group where glucuronidation could take place. The product ion mass spectra of the native morphine glucuronides were indistinguishable due to the initial neutral loss of monodehydrated glucuronic acid (176 u). However, a significant difference between the isomers was observed with DMISC derivatization, as only the form with a free phenol, M6G, gave a detectable reaction product. Formoterol formed two detectable glucuronide isomers in the enzymatic reaction. Their respective sites of conjugation could not be directly determined from the product ion spectra. Reaction with DMISC, however, gave a detectable product with only one of the isomers. Based on previous experience of the preferred DMISC reactions with phenols, and interpretation of the fragmentation pattern of the derivative, it was concluded that the reactive isomer had a free phenol, and was thus conjugated on the aliphatic chain.  相似文献   

2.
The mass spectral characteristics of perfluorooctane sulfonate (PFOS, C(8)F(17)SO(3)-) isomers present in technical PFOS were obtained using high-resolution gas chromatography (HRGC) combined with mass spectrometry (MS). To make PFOS amenable to HRGC separation, a simple derivatization procedure was developed. The method involved the conversion of PFOS into the iso-propyl ester using iso-propanol as the derivatization reagent under acidic conditions. Mass spectra were generated employing electron ionization (EI) and negative chemical ionization (NCI). Interpretation of fragment ions was possible due to the use of deuterium-labeled iso-propanol as derivatization reagent, which induced mass shifts in the electron ionization (EI) and negative chemical ionization (NCI) mass spectra. HRMS allowed the accurate mass measurement of important EI fragments and confirmed the derivatization reaction as well as the proposed fragmentation pathway involving rearrangement. Moreover, the high resolution provided by HRGC enabled the separation of eleven PFOS isomers present in the technical product. This is an improvement over the previously reported high-performance liquid chromatography (HPLC) separation. A complete identification of all isomers was not possible due to lack of pure reference materials. Finally, the developed derivatization procedure was successfully applied to perfluoroalkyl carboxylates (PFCA) and corresponding fragmentation involving rearrangement of the derivatized PFCA was observed. The described qualitative derivatization offers a promising alternative technique for the separation and identification of isomers of perfluoroalkyl sulfonates and carboxylates by HRGC/MS.  相似文献   

3.
The fragmentation behavior of (+)-silybin (1) and (+)-deuterosilybin (2), as well as of their flavanone-3-ol-type building blocks, such as 3,5,7-trihydroxy-2-phenyl-4-chromanone (3) and 2-(1,4-benzodioxolanyl)-3,5,7-trihydroxy-4-chromanone (4), were investigated by atmospheric pressure chemical ionization quadropole time-of-flight tandem mass spectrometry in the positive ion mode (APCI(+)-QqTOF MS/MS). The product ion spectra of the protonated molecules of 1 revealed a rather complicated fragmentation pattern with product ions originating from consecutive and competitive loss of small molecules such as H2O, CO, CH2O, CH3OH and 2-methoxyphenol, along with the A+- and B+-type ions arising from the cleavage of the C-ring of the flavanone-3-ol moiety. The elucidation of the fragmentation behavior of 1 was facilitated by acquiring information on the fragmentation characteristics of the flavanone-3-ol moieties and 2. The capability of the accurate mass measurement on the quadrupole time-of-flight mass spectrometer allowed us to determine the elemental composition of each major product ion. Second-generation product ion spectra obtained by combination of in-source collision induced dissociation (CID) with selective CID (pseudo-MS(3)) was also helpful in elaborating the fragmentation pathways and mechanism. Based on the experimental results, a fragmentation mechanism as well as fragmentation pathways for 1 and its flavanone-3-ol building blocks (3, 4) are proposed and discussed.  相似文献   

4.
The rapid desorption electrospray ionisation (DESI) of some small molecules and their fragmentation using a triple-quadrupole and a hybrid quadrupole time-of-flight mass spectrometer (Q-ToF) have been investigated. Various scanning modes have been employed using the triple-quadrupole instrument to elucidate fragmentation pathways for the product ions observed in the collision-induced dissociation (CID) spectra. Together with accurate mass tandem mass spectrometry (MS/MS) measurements performed on the hybrid Q-ToF mass spectrometer, unequivocal product ion identification and fragmentation pathways were determined for deprotonated metoclopramide and protonated aspirin, caffeine and nicotine. Ion structures and fragmentation pathway mechanisms have been proposed and compared with previously published data. The necessity for elevated resolution for the differentiation of isobaric ions are discussed.  相似文献   

5.
Anabolic steroids are structurally similar compounds, and their product-ion spectra obtained by tandem mass spectrometry under electrospray ionization conditions are quite difficult to interpret because of poly-ring structures and lack of a charge-retaining center in their chemical structures. In the present study, the fragmentation of nine anabolic steroids of interest to the racing industry was investigated by using triple quadrupole mass spectrometer, Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, and a linear ion trap instrument. With the aid of an expert system software (Mass Frontier version 3.0), accurate mass measurements, and multiple stage tandem mass spectrometric (MS(n)) experiments, fragmentation pathways were elucidated for boldenone, methandrostenolone, tetrahydrogestrinone (THG), trenbolone, normethandrolone and mibolerone. Small differences in the chemical structures of the steroids, such as an additional double-bond or a methyl group, result in significantly different fragmentation pathways. The fragmentation pathways proposed in this paper allow interpretation of major product ions of other anabolic steroids reported by other researchers in a recent publication. The proposed fragmentation pathways are helpful for characterization of new steroids. The approach used in this study for elucidation of the fragmentation pathways is helpful in interpretation of complicated product-ion spectra of other compounds, drugs and their metabolites.  相似文献   

6.
Two mass spectrometers, in parallel, were employed simultaneously for analysis of triacylglycerols in canola oil, for analysis of triolein oxidation products, and for analysis of triacylglycerol positional isomers separated using reversed-phase high-performance liquid chromatography. A triple quadrupole mass spectrometer was interfaced via an atmospheric pressure chemical ionization (APCI) interface to two reversed-phase liquid chromatographic columns in series. An ion trap mass spectrometer was coupled to the same two columns using an electrospray ionization (ESI) interface, with ammonium formate added as electrolyte. Electrospray ionization mass spectrometry (ESI-MS) under these conditions produced abundant ammonium adduct ions from triacylglycerols, which were then fragmented to produce MS/MS spectra and then fragmented further to produce MS/MS/MS spectra. ESI-MS/MS of the ammoniated adduct ions gave product ion mass spectra which were similar to mass spectra obtained by APCI-MS. ESI-MS/MS produced diacylglycerol fragment ions, and additional fragmentation (MS/MS/MS) produced [RCO](+) (acylium) ions, [RCOO+58](+) ions, and other related ions which allowed assignment of individual acyl chain identities. APCI-MS of triacylglycerol oxidation products produced spectra like those reported previously using APCI-MS. APCI-MS/MS produced ions related to individual fatty acid chains. ESI-MS of triacylglycerol oxidation products produced abundant ammonium adduct ions, even for those molecules which previously produced little or no intact molecular ions under APCI-MS conditions. Fragmentation (MS/MS) of the [M+NH(4)](+) ions produced results similar to those obtained by APCI-MS. Further fragmentation (MS/MS/MS) of the diacylglycerol fragments of oxidation products provided information on the oxidized individual fatty acyl chains. ESI-MS and APCI-MS were found to be complementary techniques, which together contributed to a better understanding of the identities of the products formed by oxidation of triacylglycerols.  相似文献   

7.
Fragmentation studies of three antifungal drugs, clotrimazole, fluconazole and clioquinol ,were performed. A triple quadrupole linear ion trap mass spectrometer was used for this purpose. This type of equipment enables MS(3) spectra to be obtained which lead to better understanding of fragmentation pathways. Nevertheless, it is rarely used for fragmentation studies. The results obtained here for the antifungal drugs gave further insight into fragmentation pathways of clotrimazole and fluconazole. Moreover, fragmentation of clioquinol was investigated which had not been presented before.  相似文献   

8.
To enable the development of a tandem mass spectrometry (MS/MS) based methodology for selective protein identification and differential quantitative analysis, a novel derivatization strategy is proposed, based on the formation of a "fixed-charge" sulfonium ion on the side-chain of a methionine amino acid residue contained within a protein or peptide of interest. The gas-phase fragmentation behavior of these side chain fixed charge sulfonium ion containing peptides is observed to result in exclusive loss of the derivatized side chain and the formation of a single characteristic product ion, independently of charge state or amino acid composition. Thus, fixed charge containing peptide ions may be selectively identified from complex mixtures, for example, by selective neutral loss scan mode MS/MS methods. Further structural interrogation of identified peptide ions may be achieved by subjecting the characteristic MS/MS product ion to multistage MS/MS (MS3) in a quadrupole ion trap mass spectrometer, or by energy resolved "pseudo" MS3 in a triple quadrupole mass spectrometer. The general principles underlying this fixed charge derivatization approach are demonstrated here by MS/MS, MS3 and "pseudo" MS3 analysis of side chain fixed-charge sulfonium ion derivatives of peptides containing methionine formed by reaction with phenacylbromide. Incorporation of "light" and "heavy" isotopically encoded labels into the fixed-charge derivatives facilitates the application of this method to the quantitative analysis of differential protein expression, via measurement of the relative abundances of the neutral loss product ions generated by dissociation of the light and heavy labeled peptide ions. This approach, termed "selective extraction of labeled entities by charge derivatization and tandem mass spectrometry" (SELECT), thereby offers the potential for significantly improved sensitivity and selectivity for the identification and quantitative analysis of peptides or proteins containing selected structural features, without requirement for extensive fractionation or otherwise enrichment from a complex mixture prior to analysis.  相似文献   

9.
The applicability of 3‐pyridyl isothiocyanate, p‐(dimethylamino)phenyl isothiocyanate and m‐nitrophenyl isothiocyanate as the derivatization reagents for amines in high‐performance liquid chromatography/electrospray ionization–tandem mass spectrometry (LC/ESI‐MS/MS) was examined. The generated derivatives of amines with these reagents were favorably separated on the reversed‐phase column and detected by ESI‐MS/MS. The C–N bond of the generated thiourea structure was efficiently cleaved by collision‐induced dissociation and gave the single and intense product ion. Among the three reagents, 3‐pyridyl isothiocyanate was the most suitable as the derivatization reagent with regard to the reactivity to amines and the detection sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N‐phenylpropanamide. 1‐(2‐Phenylethyl)‐1,2,3,6‐tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS3) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium‐labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M+) and multiply ([M++nH](n+1)+) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/6-31+G** level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. Finally, MS3 dissociation of the nominally identical neutral and protonated loss product ions formed by MS/MS of the [M++H]2+ and [M++2H]3+ precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.  相似文献   

12.
The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic ‘V’‐type chemical weapons [O‐alkyl S‐(2‐dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine‐containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization‐MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five ‘V’‐type agents, including O‐ethyl S‐(2‐diisopropylamino)ethyl methylphosphonothiolate (VX), O‐isobutyl S‐(2‐diethylamino)ethyl methylphosphonothiolate (RVX) and O‐ethyl S‐(2‐diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS3 experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of ‘V’‐type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information‐rich spectra, although many of the product ions obtained were at low abundance. Employing MS3 experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group‐specific ions elucidated in this work are also useful for screening unknown ‘V’‐type agents and related compounds, utilizing precursor ion scan experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of the present study was to develop a practical method for the characterization of coumarins in Radix Glehniae by liquid chromatography–mass spectrometry (LC–MS). First, 10 coumarin standards (including two pairs of isomers) were studied, and mass spectrometry fragmentation patterns and elution time rules for the coumarins were found. Then, an extract of Radix Glehniae was analyzed by the combination of two scan modes, i.e., multiple ion monitoring-information-dependent acquisition-enhanced product ion mode (MIM-IDA-EPI) and precursor scan information-dependent acquisition-enhanced product ion mode (PREC-IDA-EPI) on a hybrid triple quadrupole-linear ion trap mass spectrometer. A total of 41 coumarins were identified on the basis of their mass spectrometry fragmentation patterns. This is the first time that these two scan modes have been combined to characterize chemical constituents in traditional Chinese medicine. This new method allowed the identification of coumarins in Radix Glehniae in trace amounts. The methodology proposed in this study could be valuable for the structural characterization of coumarins from complex natural and synthetic sources.  相似文献   

14.
The fragmentation of 15 alkyl 1-methylpyridinium ether derivatives (D+) of primary and secondary alcohols, benzylic alcohols and phenyl-substituted alcohols was investigated using energy-resolved tandem mass spectrometry. Fragmentation pathways and mechanisms, including the influence of substituents, on the formation of the major product ions, which appear at m/z 110, [D - 109]+ and [D - 111]+, were postulated. Comparison of the abundances of these ions in the product ion spectra of isomeric alcohol derivatives, obtained at the same center-of-mass collision energy (2.0 eV), was found to provide the ability to differentiate among some isomers.  相似文献   

15.
The electrospray ionisation (ESI) of selected hemiterpenoid and dimeric coumarin derivatives and their subsequent fragmentation using an ion trap mass spectrometer are reported and discussed. Sequential product ion fragmentation experiments (MS(n)) were performed in order to elucidate the degradation pathways for these compounds. The results illustrate that the observed characteristic fragmentation patterns are of considerable utility in the application of ESI mass spectrometry to the characterisation of this class of compounds.  相似文献   

16.
Active phloroglucinol constituents of Hypericum perforatum (St. John's wort) extracts, hyperforin and adhyperforin, have been studied following ion activation using tandem mass spectrometry (MS/MS) and complemented by accurate mass measurements. These two compounds were readily analyzed as protonated and deprotonated molecules with electrospray ionization. MS/MS and MS3 data from a quadrupole-linear ion trap tandem mass spectrometer were employed to elucidate fragmentation pathways. Fourier transform ion cyclotron resonance measurements afforded excellent mass accuracies for the confirmation of elemental formulae of product ions formed via infrared multiphoton dissociation and sustained off-resonance irradiation collision-induced dissociation. Fragmentation schemes have been devised for the dissociation of hyperforin and adhyperforin in negative and positive ion modes. This information is expected to be especially valuable for the characterization of related compounds, such as degradation products, metabolites and novel synthetic analogs of hyperforin.  相似文献   

17.
The atmospheric pressure chemical ionization of the dinitrotoluene isomers in ambient air was studied with a quadrupole mass spectrometer operating in the negative mode. The isomers can be grouped on the basis of the product ions: 2,5-, and 2,6- and 3,5-dinitrotoluene give the molecular anion with little fragmentation; 2,3- and the 3,4-dinitrotoluene behave similarly but with more extensive fragmentation; 2,4-dinitrotoluene gives the quasimolecular [DNT ? H]? ion with little fragmentation. The results are discussed in terms of the molecular structure of the isomers.  相似文献   

18.
Within the mass spectrometric study of bisubstituted isoquinolines that possess great potential as prolylhydroxylase inhibitor drug candidates (e.g., FG-2216), unusually favored gas-phase formations of carboxylic acids after collisional activation were observed. The protonated molecule of [(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid was dissociated, yielding the 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid methyleneamide cation. Subsequent dissociation caused the nominal elimination of 11 u that resulted from the loss of HCN and concomitant addition of oxygen to the product ion, which formed the protonated 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid. The preference of this structure under mass spectrometric conditions was substantiated by tandem mass spectrometry analyses using the corresponding methyl ester (1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid methyl ester) that eliminated methylene (-14 u) upon collisional activation. Moreover, the major product ion of 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid, which resulted from the loss of water in MS3 experiments, restored the precursor ion structure by re-addition of H2O. Evidences for these phenomena were obtained by chemical synthesis of proposed gas-phase intermediates, H/D exchange experiments, high-resolution/high accuracy mass spectrometry at MSn level, and "ping-pong" analyses (MS7, in which the precursor ion was dissociated and the respective product ion isolated to regenerate the precursor ion for repeated dissociation. Based on these results, dissociation pathways for [(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid were suggested that can be further utilized for the characterization of structurally related compounds or metabolic products in clinical, forensic, or doping control analysis.  相似文献   

19.
Based on ion trap mass spectrometry, an on-line method is described which provides valuable information on the molecular composition of structurally complex organic aerosols. The investigated aerosols were generated from the gas-phase ozonolysis of various C(10)H(16)-terpenes (alpha-pinene, beta-pinene, 3-carene, sabinene, limonene), and directly introduced into the ion source of the mass spectrometer. Negative ion chemical ionisation at atmospheric pressure (APCI(-)) enabled the detection of multifunctional carboxylic acid products by combining inherent sensitivity and molecular weight information. Sequential low-energy collision-induced product ion fragmentation experiments (MS(n)) were performed in order to elucidate characteristic decomposition pathways of the compounds. Dicarboxylic acids, oxocarboxylic acids and hydroxyketocarboxylic acid products could be clearly distinguished by multistage on-line MS. Furthermore, sabinonic acid and two C(9)-ether compounds were tentatively identified for the first time by applying on-line APCI(-)-MS(n).  相似文献   

20.
We report a column-switching liquid chromatography (LC) tandem mass spectrometry (MS/MS) method for highly sensitive determination of both free estrogens (estrone, estradiol, and estriol) and their conjugates (estrone-3-sulfate, estradiol-3-sulfate, estriol-3-sulfate, estrone-3-glucuronide, estradiol-3-glucuronide, estriol-16-glucuronide, and estriol-3-glucuronide) in river water. This technique combines reversed phase (RP) chromatographic separation of the dansyl chloride derivatized free estrogens and hydrophilic interaction liquid chromatographic (HILIC) separation of the estrogen conjugates with multiple reaction monitoring (MRM). Using this new method, sensitivity increases 100- to 1000-fold for free estrogens and 2- to 10-fold for estrogen conjugates over RPLC-MS/MS alone. Method detection limits (MDL) range from 0.038 to 6.9 ng L−1 with accuracy of 68-105% and precision of 1.7-17%. We successfully used this method to analyze river water samples collected from the North Saskatchewan River at the same location and detected trace concentrations of estrone (0.042 ng L−1) and estrone-3-sulfate (0.84 ng L−1), demonstrating the application of this method for environmental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号