首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Noble metal single-atom catalysts (NM-SACs) anchored at novel graphene-like supports has attracted enormous interests. Gas sensitivity, catalytic activity, and d-band centers of single NM (Pt and Pd) atoms at graphenylene (graphenylene-NM) are investigated using first-principle calculations. The adsorption geometries of gas reactants on graphenylene-NM sheets are analyzed. It is found that the adsorption energies of reactant species on graphenylene-Pt are larger than those on graphenylene-Pd, because the d-band center of the Pt atom is closeser to the Fermi level. The NO and CO oxidation reactions on graphenylene-NM are investigated via four catalytic mechanisms, including Langmuir-Hinshelwood (LH), Eley-Rideal (ER), New ER (NER), and termolecular ER (TER). The results show that the NO and CO oxidations via LH and TER mechanisms can occur owing to the relatively small energy barriers. Moreover, the interaction of 2NO+2CO via ER mechanism is the energetically more favorable reaction. Although the NO oxidation via the NER mechanism has rather low energy barriers, the reaction is unlikely to occur due to the low adsorption energy of O2 compared with CO and NO. This research may provide guidance for exploring the catalytic performance of SACs on graphene-like materials to remove toxic gas molecules.  相似文献   

2.
《中国化学快报》2023,34(2):107412
Finding transition metal catalysts for effective catalytic conversion of CO to CO2 has attracted much attention. MXene as a new 2D layered material of early transition metal carbides, nitrides, and carbo-nitrides is a robust support for achoring metal atoms. In this study, the electronic structure, geometries, thermodynamic stability, and catalytic activity of MXene (Mo2CS2) supported single noble metal atoms (NM = Ru, Rh, Pd, Ir, Pt and Au) have been systematically examined using first-principles calculations and ab initio molecular dynamic (AIMD) simulations. First, AIMD simulations and phonon spectra demonstrate the dynamic and thermal stabilities of Mo2CS2 monolayer. Three likely reaction pathways, Langmuir-Hinshelwood (LH), Eley-Rideal (ER), and Termolecular Eley–Rideal (TER) for CO oxidation on the Ru1- and Ir1@Mo2CS2 SACs, have been studied in detail. It is found that CO oxidation mainly proceeds via the TER mechanism under mild reaction conditions. The corresponding rate-determining steps are the dissociation of the intermediate (OCO-Ru1-OCO) and formation of OCO-Ir1-OCO intermediate. The downshift d-band center of Ru1- and Ir1@Mo2CS2 help to enhance activity and improve catalytst stability. Moreover, a microkinetic study predicts a maximum CO oxidation rate of 4.01 × 102 s-1 and 4.15 × 103 s-1 (298.15 K) following the TER pathway for the Ru1- and Ir1@Mo2CS2 catalysts, respectively. This work provides guideline for fabricating and designing highly efficient SACs with superb catalyts using MXene materials.  相似文献   

3.
将孤立的Pd原子分散到ZnO纳米线(NWs)上作为单原子催化剂(SACs),并考察了它们在若干反应中的催化性能.Pd1/ZnO SAC对甲醇蒸汽重整制氢反应表现出高的活性、稳定性和CO2选择性.该催化剂体系对CO和H2的氧化也具有高活性,但在富氢物料中CO优先氧化反应中的催化剂性能较差,这主要是由于在ZnO负载的Pd1原子上H2氧化的强竞争反应所致.常压下在Pd1/ZnO SAC上就可发生逆水汽变换反应.该系列催化反应测试结果清楚地表明,选择合适金属与载体对开发分子催化转化用单原子催化剂至关重要.  相似文献   

4.
Developing the low-cost and efficient single-atom catalysts (SACs) for nitrogen reduction reaction (NRR) is of great importance while remains as a great challenge. The catalytic activity, selectivity and durability are all fundamentally related to the elaborate coordination environment of SACs. Using first-principles calculations, we investigated the SACs with single transition metal (TM) atom supported on defective boron carbide nitride nanotubes (BCNTs) as NRR electrocatalysts. Our results suggest that boron-vacancy defects on BCNTs can strongly immobilize TM atoms with large enough binding energy and high thermal/structural stability. Importantly, the synergistic effect of boron nitride (BN) and carbon domains comes up with the modifications of the charge polarization of single-TM-atom active site and the electronic properties of material, which has been proven to be the essential key to promote N2 adsorption, activation, and reduction. Specifically, six SACs (namely V, Mn, Fe, Mo, Ru, and W atoms embedded into defective BCNTs) can be used as promising candidates for NRR electrocatalysts as their NRR activity is higher than the state-of-the art Ru(0001) catalyst. In particular, single Mo atom supported on defective BCNTs with large tube diameter possesses the highest NRR activity while suppressing the competitive hydrogen evolution reaction, with a low limiting potential of −0.62 V via associative distal path. This work suggests new opportunities for driving NH3 production by carbon-based single-atom electrocatalysts under ambient conditions.  相似文献   

5.
The solvent‐free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single‐atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O2 activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal–support interfacial sites.  相似文献   

6.
The solvent‐free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single‐atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O2 activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal–support interfacial sites.  相似文献   

7.
The preferential oxidation (PROX) of CO in the presence of H(2) is an important step in the production of pure H(2) for industrial applications. In this report, two sonochemical methods (S1 and S2) were used to prepare highly dispersed Ru catalysts supported on mesoporous TiO(2) (TiO(2)(MSP)) for the PROX reaction, in which a reaction gas mixture containing 1% CO + 1% O(2) + 18% CO(2) + 78% H(2) was used. The supported Ru catalysts performed better than the supported Au and Pt catalysts, and the S1 and S2 methods are superior to the impregnation method. The Ru/TiO(2)(MSP) catalysts were active for the PROX reaction below 200 °C and good for the methanation reactions of CO and CO(2) above 200 °C. The presence of residual chlorine in the catalysts severely suppressed their PROX reaction activity, and a higher dispersion of Ru particles led to better catalytic performances. The addition of Au in the Ru/TiO(2)(MSP) catalyst also caused a poorer catalytic activity for both the PROX and the methanation reactions. TPR results showed that in the active catalysts prepared by the S1 and S2 methods, the well dispersed Ru particles, after calcination in air, had a stronger interaction with the support than those in the catalyst prepared by the impregnation method and in the Au-Ru/TiO(2)(MSP) catalyst. In situ CO absorption experiments performed with the diffusion reflectance Fourier transform infra red (DRIFT) method showed that the bridged adsorbed CO species on isolated Ru(0) sites correlated with the catalytic performances, indicating that these isolated Ru(0) sites are the most active sites of the Ru/TiO(2)(MSP) catalysts in the PROX reaction.  相似文献   

8.
氧化铈独特的氧化还原性能使其适合用作氧化反应中的催化剂或载体.氧化铈负载的过渡金属纳米粒子或孤立的单原子提供了金属-载体界面,从而降低了去除界面氧原子的能耗,提供了可以参与ManVanKulvian氧化过程的活性氧物种.CO氧化是测试氧化铈负载催化剂还原性的主要探针反应,并且它常见于在相对低温下消除CO的各种应用中.在过量H2中优先氧化CO(PROX)反应可控制CO浓度达到超低水平,以防止氢氧化电催化剂中毒.催化剂在CO氧化反应中的活性和在PROX反应中对CO和H2的选择性取决于金属物种的种类和分散性、CeO2的结构和化学性质以及催化剂的合成方法.在这篇综述中,我们总结了最近发表的关于CeO2负载的金属纳米粒子和单原子催化CO氧化和PROX反应的相关工作;以及不同的负载金属和同种金属在普通CeO2表面上的反应性.我们还总结了密度泛函理论计算中提出的最可能的反应机理;并且讨论了各种负载型金属在PROX反应中影响CO氧化选择性的因素.  相似文献   

9.
负载型纳米贵金属催化剂是用于多相催化反应的重要的催化剂之一,也是各国催化科学与技术研发的重点,其工业应用也越来越广泛.理论和实验的研究结果均表明,当载体表面的金属粒子尺寸减小至亚纳米级乃至更小的低配位、不饱和的原子团簇时,它们常常成为诱发催化反应的活性中心,呈现更高的催化活性和选择性.将负载的金属尺寸由纳米量级减小至分散的金属团簇甚至单原子而使每个原子成为反应的活性位点已成为研究的重点.最近,由张涛等首次合成的单原子催化剂(SAC)Pt1/FeOx引起了国内外催化及表面科学工作者的极大关注.单原子催化剂作为连接均相催化剂和多相催化剂的桥梁,不仅具有非均相催化剂的稳定、易于与反应体系分离、易表征等优点,而且具有均相催化剂活性中心结构均一、活性中心原子利用率百分之百等优点.一方面,单原子催化剂给多相催化领域注入了新的活力,另一方面也更有利于运用量子与计算化学的研究方法建立与实验相匹配的理论模型并从原子水平上进一步理解多相催化反应的微观作用机理.实验和理论的研究结果表明,其它单原子催化剂如Ir1/FeOx,Au1/FeOx和Ni1/FeOx催化CO氧化反应表现出不同的活性.然而,底物FeOx中的Fe同样是第VIII族中的3d过渡金属,却在低温下对CO氧化反应没有催化活性.我们围绕这一问题,重点研究了底物FeOx在负载单原子Pt1前后催化CO氧化的反应机理和活性,解释了单原子催化剂Pt1/FeOx相比于底物FeOx为何具有如此高的催化活性的原因.我们采用Vienna Ab-initio Simulation Package(VASP)从头算模拟软件和密度泛函理论(DFT)的广义梯度近似(GGA)进行了理论计算.其中,选择PBE泛函描述体系的交换关联相互作用,用投影缀加波(PAW)赝势基组方法描述体系中的电子和离子实之间的相互作用,对Fe原子采用了DFT+U方法进行d电子强相关校正,并使用Dimer计算方法搜寻反应过渡态.研究结果表明,底物FeOx中氧空位的再生伴随第二个CO2分子从催化剂表面脱附的过程需要较高的活化势垒(1.09 eV),这一过程是整个CO氧化反应的决速步.与此相比较,Pt1/FeOx催化剂中,由于Pt原子代替了表面Fe原子,导致电子结构及性质的显著变化,有利于CO的活化、氧化和CO2的脱附.我们从电子能量态密度(DOS)和Bader电荷分析及模型分子团簇的轨道相互作用的角度进一步分析了两种催化剂存在差异的本质;揭示了单原子催化剂Pt1/FeOx中Pt1和底物FeOx之间的相互作用的机理及催化剂表面Pt单原子在催化反应过程中的关键作用.  相似文献   

10.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

11.
CO低温氧化是多相催化领域研究最多的反应之一.作为简单、典型的探针反应,其不仅具有重要的基础研究价值,而且在环境污染消除等方面也有着非常重要的实际应用价值.金属氧化物如铜锰(Hopcalite)、铜铬复合氧化物以及氧化钴等都具有优异的低温CO氧化活性.然而氧化物催化剂热稳定性低、反复启动性能差、以及对硫化物、水等物质敏感,严重制约了其实际应用.相对而言,负载型贵金属催化剂因具有较高的CO氧化活性、反应稳定性以及热稳定性而受到关注.但是贵金属价格昂贵、资源稀少,使其持续应用面临严峻挑战.为了提高贵金属利用效率、降低贵金属使用量,在负载型贵金属催化剂中,贵金属多以纳米尺度分散于高比表面载体上.由于多相催化一般在纳米粒子表面发生,只有表面金属原子能够接触到反应物,因而贵金属原子利用率仍然有待提高.最近本课题组成功开发以原子级分散的单原子催化剂并提出“单原子催化”的概念.后续研究以及其他研究人员相继证明氧化物负载贵金属单原子具有高活性和/或不同于纳米粒子的反应性能,表明开发单原子催化剂是最大化贵金属利用效率、降低贵金属用量的可行途径.对于CO氧化而言,目前普遍认为负载Au催化剂具有最高活性.然而负载Au单原子催化剂是否具有活性仍存争议:理论计算表明氧化物负载Au单原子催化剂具有很好的活性,但是缺少实验证据;目前已有一些氧化物负载Au正价离子催化剂的报道,结果也都表明Au单原子活性远低于纳米粒子或纳米团簇.最近本课题组发现氧化铁负载Au单原子不仅具有与Au纳米粒子相当的单位活性位(TOF)活性而且具有更高的单位金属重量(反应速率)活性以及非常高的反应稳定性.本文将载体拓展到氧化钴,开发了具有更高活性的氧化钴负载Au单原子催化剂, Au负载量仅为0.05 wt%即可在室温条件下实现CO完全转化. Co3O4载体用Co(NO3)3与Na2CO3通过共沉淀法制备,400 oC焙烧.然后通过简单的沉淀吸附法制备Co3O4负载Au单原子催化剂(Au1/Co3O4),确保Au单原子能够分散于载体的表面.具有原子分辨率的球差校正高分辨电镜照片显示Au原子确实以单原子形式分散于载体上.催化剂在第一个循环中活性并不非常高,但是在第二个循环中活性提高非常明显,可以在室温条件下实现CO全转化.为了弄清楚活性提高的原因,我们用惰性气体(He)、氧化性气体(5%O2/He)以及还原性气体(5%CO/He)对催化剂进行了热处理,但是活性提高并不明显.由此推断催化剂是在第一个循环反应过程中发生了某些变化,导致活性显著提高.空白载体实验表明Co3O4载体本身虽然具有反应活性,但是远不如负载少量Au原子活性高,表明Au原子或Au原子与载体一起起到高活性的作用.稳定性研究表明该催化剂在室温条件下容易失活,但经惰性气体或氧化气体处理后活性可恢复,表明不是结构性失活而是可逆失活,说明单原子非常稳定.  相似文献   

12.
Various well-defined Ni-Pt(111) model catalysts are constructed at atomic-level precision under ultra-high-vacuum conditions and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. Subsequent studies of CO oxidation over the surfaces show that a sandwich surface (NiO(1-x)/Pt/Ni/Pt(111)) consisting of both surface Ni oxide nanoislands and subsurface Ni atoms at a Pt(111) surface presents the highest reactivity. A similar sandwich structure has been obtained in supported Pt-Ni nanoparticles via activation in H(2) at an intermediate temperature and established by techniques including acid leaching, inductively coupled plasma, and X-ray adsorption near-edge structure. Among the supported Pt-Ni catalysts studied, the sandwich bimetallic catalysts demonstrate the highest activity to CO oxidation, where 100% CO conversion occurs near room temperature. Both surface science studies of model catalysts and catalytic reaction experiments on supported catalysts illustrate the synergetic effect of the surface and subsurface Ni species on the CO oxidation, in which the surface Ni oxide nanoislands activate O(2), producing atomic O species, while the subsurface Ni atoms further enhance the elementary reaction of CO oxidation with O.  相似文献   

13.
Single-atom catalysts (SACs) have emerged as promising materials in heterogeneous catalysis. Previous studies reported controversial results about the relative level in activity for SACs and nanoparticles (NPs). These works have focused on the effect of metal atom arrangement, without considering the oxidation state of the SACs. Here, we immobilized Pt single atoms on defective ceria and controlled the oxidation state of Pt SACs, from highly oxidized (Pt0: 16.6 at %) to highly metallic states (Pt0: 83.8 at %). The Pt SACs with controlled oxidation states were then employed for oxidation of CO, CH4, or NO, and their activities compared with those of Pt NPs. The highly oxidized Pt SACs presented poorer activities than Pt NPs, whereas metallic Pt SACs showed higher activities. The Pt SAC reduced at 300 °C showed the highest activity for all the oxidations. The Pt SACs with controlled oxidation states revealed a crucial missing link between activity and SACs.  相似文献   

14.
Single-atom catalysts (SACs) have emerged as crucial players in catalysis research, prompting extensive investigation and application. The precise control of metal atom nucleation and growth has garnered significant attention. In this study, we present a straightforward approach for preparing SACs utilizing a photocatalytic radical control strategy. Notably, we demonstrate for the first time that radicals generated during the photochemical process effectively hinder the aggregation of individual atoms. By leveraging the cooperative anchoring of nitrogen atoms and crystal lattice oxygen on the support, we successfully stabilize the single atom. Our Pd1/TiO2 catalysts exhibit remarkable catalytic activity and stability in the Suzuki–Miyaura cross-coupling reaction, which was 43 times higher than Pd/C. Furthermore, we successfully depose Pd atoms onto various substrates, including TiO2, CeO2, and WO3. The photocatalytic radical control strategy can be extended to other single-atom catalysts, such as Ir, Pt, Rh, and Ru, underscoring its broad applicability.  相似文献   

15.
The mechanism of the CO oxidation promoted by a neutral Ag(55) cluster was investigated extensively, using density functional theory calculations. The CO oxidation process catalyzed by anionic and cationic Ag(55) clusters was also studied, to clarify the effects of the charge state. The Eley-Rideal (ER) and Langmuir-Hinshelwood (LH) mechanisms were discussed in detail. Six reaction pathways were found for the Ag(55)-mediated CO oxidation. It was found that the ER mechanism competed with the LH mechanism. The rate-limiting step of the CO oxidation was the reaction of CO with the Ag(55)O species. All of the anionic, neutral, and cationic Ag(55) clusters were able to promote CO oxidation at low temperatures. The present results enrich our understanding of the catalytic oxidation of CO by nano-sized Ag-based catalysts.  相似文献   

16.
Single-atom catalysts (SACs) have been widely applied as electrocatalysts due to their excellent catalytic ability, selectivity, and stability, which are also key aspects considered for electro-sensing interfaces. Typical SACs are catalytic single atoms dispersed over oxide-, sulfide-, or carbon-based material supports. In this review, the electrocatalytic mechanisms of SACs are briefly summarized. SACs can increase the reactivity and modulate the reaction pathway via redox mediating, adsorbing to the preferred reactant/intermediate, and cooperating with other active sites either from the substrate or from a nearby heteroatom. Based on the mechanistic insights of SACs, this review aims to provide some inspirations for future applications of SACs in the design of efficient electro-sensing interfaces.  相似文献   

17.
RuO(2)-based catalysts are much more active in the oxidation of CO than related metallic Ru catalysts. This high catalytic activity (or low activation barrier) is attributed to the weak oxygen surface bonding of bridging O atoms on RuO(2)(110) in comparison with the strongly chemisorbed oxygen on Ru(0001). Since the RuO(2)(110) surface is able to stabilize an even more weakly bound on-top oxygen species, one would anticipate that the catalytic activity will increase further under oxidizing conditions. We will show that this view is far too simple to explain our temperature-programmed reaction experiments, employing isotope labeling of the potentially active surface oxygen species on RuO(2)(110). Rather, both surface O species on RuO(2)(110) reveal similar activities in oxidizing CO.  相似文献   

18.
The methanol oxidation reaction(MOR) is the limiting half-reaction in direct methanol fuel cell(DMFC).Although Pt is the most active single-metal electrocatalyst for MOR,it is hampered by high cost and CO poisoning.Constructing a Pt or Ru monolayer on a second metal substrate by means of galvanic replacement of underpotentially deposited(UPD) Cu monolayer has been shown as an efficient catalyst design strategy for the electrocatalysis of MOR because of the presumed 100% utilization of atoms and resistance to CO poisoning.Herein,we prepared one-dimensional surface-alloyed electrocatalyst from predominantly(111) faceted Au nanowires with high aspect ratio as the substrate of under-potential deposition.The electrocatalyst comprises a core of the Au nanowire and a shell of catalytically active Pt coated by Ru.Coverage-dependent electro-catalytic activity and stability is demonstrated on the Pt/Ru submonolayers on Au wires for MOR.Among all these catalysts,Au@Pt_(ML)@Ru_(ML) exhibits the best electrocatalytic activity and poisoning tolerance to CO.This presents a viable method for the rational catalyst design for achieving high noble-metal utilization efficiency and high catalytic performance.  相似文献   

19.
Single-atom catalysis is the “hot spot” in the field of catalysis due to the special geometries, electronic states, and their unique catalytic performance. Single-atom catalysts(SACs), isolated metal atoms dispersed on the support, show the highest atom efficiency, cutting down the potential cost in the industrial process. Consequently, this “homo-hetero” catalyst could be a promising candidate for the next-generation catalysts. The applications for the SACs are widely reported, like gas-solid reactions, organic reactions, and electro-catalysis. In this mini- review, we will focus on the recent work of SACs on electro-catalysis, including hydrogen evolution reaction(HER), oxygen reduction reaction(ORR), oxygen evolution reaction(OER), CO2 reduction reaction(CO2 RR), and nitrogen reduction reaction(NRR).  相似文献   

20.
钌基催化剂催化的气固相反应   总被引:2,自引:0,他引:2  
催化剂被广泛应用于各种化学品的生产,从原子尺度了解整个催化反应体系有利于合理设计新型催化剂.参与气固相反应的催化剂主要有贵金属催化剂和过渡金属催化剂.近年来, Ru基催化剂由于在低温低压下表现出良好的催化活性而广泛应用于一些气固相反应.本文对 Ru的基本性质、氧化行为以及 Ru基催化剂的理论研究进行综述.介绍了钌基催化剂参与的气固相反应,包括挥发性有机物的催化氧化、一氧化碳优先氧化(PROX)、氨合成、氯化氢氧化以及甲烷部分氧化,分析了催化性能与理化性质之间的构效关系,提出了钌基催化剂在相关反应中存在的问题以及未来发展趋势. Ru具有多种氧化态,在 Ru基催化剂参与的气固相反应中,金属 Ru和/或 RuO2被认为是活性物种,通常反应温度在400oC以下. Ru (0001)晶面在 O2存在条件下,随着氧气含量的不同会从中间态过渡到氧化态,实验证明该晶面属于 RuO2.理论研究证实了在反应过程中 RuO2的存在,并提出了核壳结构,对于其它气固相反应的机理研究有一定启发.挥发性有机物(VOC)的催化氧化主要集中烷烃、烯烃、芳烃以及卤代烃的催化氧化,催化剂的理化性质包括颗粒粒径、价态和晶体结构等对催化活性有很大影响,并且 Ru基催化剂对卤代烃的催化氧化表现出良好的抗卤性,同时多卤代副产物低于其它贵金属体系. Ru基催化剂在低温条件下对 PROX具有高的活性和选择性,并且可以有效抑制 H2氧化、CO甲烷化和CO2甲烷化等副反应发生.氨合成的难点在于 N≡N具有很强的解离能,许多研究表明,氨合成使用的 Ru基催化剂的催化性能与载体性质密切相关, Ru与载体之间强的相互作用使得电子可以迅速地从载体转移到 Ru颗粒上,掺杂其它有效元素可能会提供更多的氧空位和有效防止高温焙烧导致催化剂烧结.对于 HCl氧化虽然研究较少,但是 Over等人对 HCl氧化机理进行了深入研究,并且日本住友化工设计的 Ru基催化剂已经商业化. Ru基催化剂可以有效降低甲烷部分氧化的反应温度和压力,并具有高的选择性和稳定性,避免副产物生成.现有催化系统以及新型催化剂开发仍面临诸多挑战,例如:对于单一 VOC氧化过程和多元 VOCs催化氧化的机理和动力学需要进一步研究;对于氨合成需要寻求具有高电导率的载体,从而将电子快速转移到 Ru颗粒表面,使得氨合成在更低温度下进行;为了避免副产物生成,需确保新型 Ru基催化剂上PROX和甲烷部分氧化在低温低压条件下进行; Ru基催化剂理化性质对活性的影响以及失活等问题需要进一步研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号