首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭明雨  江明 《化学进展》2007,19(4):557-566
本文综述了基于环糊精包结络合作用的大分子自组装的研究进展,包括:(1) 线型、梳型、多臂星型或超支化聚合物与环糊精或其二聚体自组装形成多聚轮烷(分子项链)、多聚准轮烷、双多聚(准)轮烷、分子管、双分子管、超分子凝胶及其应用;(2)桥联环糊精与桥联客体分子自组装制备线型或超支化超分子聚合物;(3)温度、pH值、光及客体分子刺激响应智能体系; (4) 通过亲水性的环糊精线型均聚物与含金刚烷的疏水性聚合物之间的包结络合作用来制备高分子胶束及其空心球等。  相似文献   

2.
Polymerizable nanogels were prepared by self-assembly of cholesteryl group-bearing pullulan (CHP) with methacryloyl groups (CHPMA). The CHPMA nanogel was polymerized with 2-methacryloyloxyethyl phosphorylcholine (MPC) by radical polymerization in dilute aqueous solution. The solution properties of the polymers in water were investigated by TEM, SEC-MALS, and fluorescence quenching technique. Monodispersed hybrid nanogels of CHPMA-MPC (CM nanogels) (25-30 nm in radius of gyration) were obtained by using CHPMA nanogel as a seed-nanogel. CM nanogels have a dual cross-linking structure that is physically cross-linked with the cholesteryl groups and chemically cross-linked with the MPC polymer chains. CM nanogels trap heat-denatured carbonic anhydrase B (CAB) and prevent their aggregations. The nanogels maintained the ability of trapping and releasing enzymes by host-guest interaction of cholesteryl group and cyclodextrin.  相似文献   

3.
Both star‐shaped poly(ε‐caprolactone) (PCL) having 4 arms (4sPCL) and 6 arms (6sPCL) and linear PCL having 1 arm (LPCL) and 2 arms (2LPCL) were synthesized and then investigated for inclusion complexation with α‐cyclodextrin (α‐CD). The supramolecular inclusion complexes (ICs) were in detail characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, solid‐state carbon nuclear magnetic resonance spectroscopy using cross‐polarization and magic‐angle spinning, and Fourier transform infrared, respectively. The stoichiometry (CL:CD, mol:mol) of all ICs increased with the increasing branch arm of PCL polymers, and it was in the order of α‐CD‐6sPCL1 ICs > α‐CD‐4sPCL ICs > α‐CD‐2LPCL ICs > α‐CD‐LPCL ICs. All analyses indicated that the branch arms of star‐shaped PCL polymers were included into the hydrophobic α‐CD cavities and their original crystalline properties were completely suppressed. Moreover, the ICs of star‐shaped PCL with α‐CD had a channel‐type crystalline structure similar to that formed between the linear PCL and α‐CD. Furthermore, the thermal stability of the free PCL polymers probably controlled that of the guest polymers included in the ICs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4721–4730, 2005  相似文献   

4.
The cover picture shows the molecular modeling of a star‐shaped metallo‐supramolecular polymer and the schematic drawing of a linear analogue. These molecules are of great interest because of their unique properties. Metallo‐supramolecular polymers emerge by the well‐directed combination of polymers, the properties of which have dominated the development of materials in recent years, with supramolecular ligands, which have the ability to organize spontaneously and form unique structures on a molecular level, and transition‐metal ions, which, through their physical properties bring characteristic functionalities. The well‐known properties of the individual components allow the use of established methods, such as UV/Vis spectroscopy, NMR spectroscopy, and gel permeation chromatography for characterization. However, the combination also requires the application of new methods, such as analytical ultracentrifugation or MALDI‐TOF mass spectrometry. More about metallo‐supramolecular polymers based on bipyridine and terpyridine complexes can be found in the review by U. S. Schubert and C. Eschbaumer on p. 2892 ff.  相似文献   

5.
Simulations of the distribution coefficients of linear and star‐shaped polymers in spherical pores were performed in order to predict the GPC‐elution behavior of star‐shaped polymers relative to that of linear polymers. Self avoiding walks were generated on a tetrahedral lattice to simulate good solvent conditions. It was found that neither the molecular weight nor the mean squared radius of gyration of the polymer serves as a universal factor to determine the distribution coefficient. However, the calculated distribution coefficients correlate well with the calculated hydrodynamic radii even for different topologies. For molecules at same elution volume the ratios of molecular weights of star and linear polymer agree well with exact calculations for Gaussian chains. These ratios are nearly independent of pore geometry (spherical or cylindrical).  相似文献   

6.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

7.
The synthesis of trimethoxysilane end‐capped linear polystyrene (PS) and star‐branched PS and subsequent silicon (Si) surface modification with linear and star polymers are described. Trimethoxysilane terminated PS was synthesized using sec‐butyl lithium initiated anionic polymerization of styrene and subsequent end‐capping of the living anions with p‐chloromethylphenyl trimethoxysilane (CMPTMS). 1H and 29Si NMR spectroscopy confirmed the successful end‐capping of polystyryllithium with the trimethoxysilane functional group. The effect of a molar excess of end‐capper on the efficiency of functionalization was also investigated, and the required excess increased for higher molar mass oligomers. Acid catalyzed hydrolysis and condensation of the trimethoxysilane end‐groups resulted in star‐branched PS, and NMR spectroscopy and SEC analysis were used to characterize the star polymers. This is the first report of core‐functionalized star‐shaped polymers as surface modifiers and the first comparative study showing differences in surface topography between star and linear polymer modified surfaces. Surface‐sensitive techniques such as ellipsometry, contact angle goniometry, and AFM were used to confirm the attachment of star PS, as well as to compare the characteristics of the star and linear PS modified Si surfaces. The polymer film properties were referenced to polymer dimensions in dilute solution, which revealed that linear PS chains were in the intermediate brush regime and the star‐branched PS produced a surface with covalently attached chains in the mushroom regime. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3655–3666, 2005  相似文献   

8.
Films of polystyrene/poly(methyl methacrylate) (PS/PMMA) blends are obtained from solution after evaporation of the solvent. The degree of mixing of the two polymers is studied using scanning electron microscopy after selective elimination of the PS phase. Using star‐shaped instead of linear PS, an important degree of mixing is observed. This must be attributed to difficult reptation of the star‐shaped chains due to the high number of entanglements between star‐shaped PS and PMMA compared to the entanglements between linear PS and PMMA.  相似文献   

9.
Combining the concepts of supramolecular polymers and dendronized polymers provides the opportunity to create bulky polymers with easy structural modification and tunable properties. In the present work, a novel class of side‐chain supramolecular dendronized polymethacrylates is prepared through the host–guest interaction. The host is a linear polymethacrylate (as the backbone) attached in each repeat unit with a β‐cyclodextrin (β‐CD) moiety, and the guest is constituted with three‐fold branched oligoethylene glycol (OEG)‐based first‐ (G1) and second‐generation (G2) dendrons with an adamantyl group core. The host and guest interaction in aqueous solution leads to the formation of the supramolecular polymers, which is supported with 1H NMR spectroscopy and dynamic light scattering measurements. The supramolecular formation was also examined at different host/guest ratios. The water solubility of hosts and guests increases upon supramolecular formation. The supramolecular polymers show good solubility in water at room temperature, but exhibit thermoresponsive behavior at elevated temperatures. Their thermoresponsiveness is thus investigated with UV/Vis and 1H NMR spectroscopy, and compared with their counterparts formed from individual β‐CD and the OEG dendritic guest. The effect of polymer concentration and molar ratio of host/guest was examined. It is found that the polar interior of the supramolecules contribute significantly to the thermally‐induced phase transitions for the G1 polymer, but this effect is negligible for the G2 polymer. Based on the temperature‐varied proton NMR spectra, it is found that the host–guest complex starts to decompose during the aggregation process upon heating to its dehydration temperature, and this decomposition is enhanced with an increase of solution temperature.  相似文献   

10.
A series of organic/inorganic hybrid star‐shaped polymers were synthesized by atom transfer radical polymerization using 3‐(3,5,7,9,11,13,15‐heptacyclohexyl‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxane‐1‐yl)propyl methacrylate (MA‐POSS) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as monomers and octakis(2‐bromo‐2‐methylpropionoxypropyldimethylsiloxy)octasilsesquioxane as an initiator. Star‐shaped polymers with methyl methacrylate (MMA) and PEGMA moieties were also prepared for comparison purposes. Dimensionally stable freestanding film could be obtained from the hybrid star‐shaped polymer containing 26 wt % of MA‐POSS moieties although its glass transition temperature is very low, ?60.9 °C. As a result, the hybrid star‐shaped polymer electrolyte containing lithium bis(trifluoromethanesulfonyl)imide showed ionic conductivities (1.75 × 10?5 S/cm at 30 °C), which were two orders of magnitude higher than those of the star‐shaped polymer electrolyte with MMA moieties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The present study aims to investigate an odd–even effect of the number of ethylene imine units in the side-groups of totally abiotic synthetic polymers on their efficiency in DNA transfection. A library of fifteen polymers was fabricated. Two star homopolymers and one linear homopolymer based on glycidyl methacrylate were synthesized and used as precursors to which five linear oligo(ethylene imine)s (OEI) were grafted. The number of ethylene imine groups of the OEIs was varied. Specifically, ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, and pentaethylene hexamine were used. Each of these fifteen OEI-grafted polymers was evaluated in terms of their efficiency to transfer plasmid DNA encoding firefly luciferase in C2C12 mouse myoblast cells. The transfection efficiency displayed an odd-even pattern, with all OEI-grafted polymers with an odd number of ethylene imine repeating units exhibiting higher transfection efficiency compared with those possessing an even number of ethylene imine repeating units. The odd–even effect was more pronounced for the star polymers with longer arms (degree of polymerization, DP = 100), while in case of the linear polymers, the odd–even effect was only observed for the lowest polymer loading. The cytotoxicity of the OEI-grafted polymers also followed an odd–even pattern, with the OEI-grafted star polymers with an arm DP of 100 and the linear polymers clearly presenting an odd-even effect, while the cytotoxicity of the OEI-grafted star polymers with an arm DP of 20 slightly increased with the number of ethylene imine repeating units.  相似文献   

12.
In this paper, we describe the development of an enzyme-linked oligonucleotide assay for the detection of a human leukocyte antigen allele associated with celiac disease based on cyclodextrin-modified polymeric surfaces. The surface of maleimide-pre-coated plates was modified with a layer of thiolated cyclodextrin polymer and used for the supramolecular capture of adamantane or ferrocene-modified carboxymethylcellulose polymers bearing DNA probes. The assay was optimised in terms of incubation time, temperature, and surface chemistry and applied to the highly sensitive and selective detection of HLA sequences with a limit of detection of 0.7 nM. A real sample analysed using this platform showed an excellent correlation with maleimide-activated plates using thiolated DNA probes.  相似文献   

13.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Self‐assembled, noncovalent polymeric biodegradable materials mimicking proteoglycan aggregates were synthesized from inclusion complexes of cationic surfactants with γ‐cyclodextrin and the natural anionic polymer hyaluronan. The amorphous structure of this ternary system was proven by X‐ray diffraction and thermal analysis. Light‐scattering measurements showed that there was a competition between hyaluronic acid and the surfactant for the cyclodextrin cavity. These self‐assembled supramolecular matrices were loaded with both hydrophilic and lipophilic drug substances for dissolution studies. The release of the entrapped drugs was found to be controlled by cations in the surrounding media and by biodegradation. Slow drug release in an ion‐free medium became faster in physiological salt solution in which the macroscopic polymer matrix was disassembled. In contrast, the enzymatic degradation of hyaluronan was hindered in the polymeric matrix. The supramolecular systems consisting of γ‐cyclodextrin as a macrocyclic host, a cationic surfactant guest, and hyaluronic acid as the anionic polymer electrostatically cross‐linked by the inclusion complex of the first two was found to be a novel drug‐delivery system for the controlled release of traditional drugs such as curcumin and ketotifen and proteins such as bovine serum albumin.  相似文献   

15.
The effect of branching point structures and densities is studied between azido‐containing hyperbranched polymers and cross‐linked nanogels on their loading efficiency of alkynyl‐containing dendron molecules. Hyperbranched polymers that contained “T”‐shaped branching linkage from which three chains radiated out and cross‐linked nanogels that contained “X”‐shaped branching linkage with four radiating chains are synthesized in microemulsion using either atom transfer radical polymerization (ATRP) or conventional radical polymerization (RP) technique. Both polymers have similar density of azido groups in the structure and exhibit similar hydrodynamic diameter in latexes before purification. Subsequent copper‐catalyzed azide–alkyne cycloaddition reactions between these polymers and alkynyl‐containing dendrons in various sizes (G1–G3) demonstrate an order of dendron loading efficiencies (i.e., final conversion of alkynyl‐containing dendron) as hyperbranched polymers > nanogels synthesized by ATRP > nanogels synthesized by RP. Decreasing the branching density or using smaller dendron molecules increases the click efficiency of both polymers. When G2 dendrons with a molecular weight of 627 Da are used to click with the hyperbranched polymers composed of 100% inimer, a maximum loading efficiency of G2 in the loaded hyperbranched polymer is 58% of G2 by weight. These results represent the first comparison between hyperbranched polymers and cross‐linked nanogels to explore the effect of branching structures on their loading efficiencies.

  相似文献   


16.
The full‐chain dynamics and the linear viscoelastic properties of monodisperse, entangled linear and star polymers are simulated consistently via an equilibrium stochastic algorithm, based on a recently proposed full‐chain reptation theory 1 that is able to treat self‐consistently mechanisms of chain reptation, chain‐length fluctuations, and constraint release. In particular, it is the first time that the full‐chain simulation for star polymers is performed without subjecting to the great simplifications usually made. To facilitate the study on linear viscoelasticity, we employ a constraint release mechanism that resembles the idea of tube dilation, in contrast to the one used earlier in simulating flows, where constraint release was performed in a fashion similar to double reptation. Predictions of the simulation are compared qualitatively and quantitatively with experiments, and excellent agreement is found for all investigated properties, which include the scaling laws for the zero‐shear‐rate viscosity and the steady‐state compliance as well as the stress relaxation and dynamic moduli, for both polymer systems. The simulation for linear polymers indicates that the full‐chain reptation theory considered is able to predict very well the rheology of monodisperse linear polymers under both linear viscoelastic and flow conditions. The simulation for star polymers, on the other hand, strongly implies that double reptation alone is insufficient, and other unexplored mechanisms that may further enhance stress relaxation of the tube segments near the star center seem crucial, in explaining the linear viscoelasticity of star polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 248–261, 2000  相似文献   

17.
We use equations derived from the blob theory to calculate the blob size and the theta temperature of star polymers. In contrast to the case of linear polymers these two parameters are calculated to depend on molecular mass for star polymers. For a given star polymer the theta temperature can be lower or higher than that of the corresponding linear polymer depending on the number and length of its branches. The results are compared with the blob model of Daoud and Cotton for star polymers. Experimental results obtained in the course of this study confirm our calculations.  相似文献   

18.
Group transfer polymerization and sequential addition of monomer and cross-linker were employed for the preparation of two new polymer structures, one of a polymer network and the other of a star polymer. The synthesis was completed in two steps, involving the synthesis of linear methyl methacrylate (MMA) arms of degree of polymerization of 20, followed by their cross-linking using a mixture of MMA monomer and ethylene glycol dimethacrylate (EGDMA) cross-linker. In this study, the volume of the cross-linking mixture was varied systematically. Furthermore, two mixture compositions were employed, involving MMA:EGDMA molar ratios of 1:1 and 3:1, leading to two series of polymeric materials. It was found that at a given cross-linking mixture composition, a larger volume of the cross-linking mixture favored the formation of polymer networks, whereas a smaller volume favored the formation of star polymers. The linear precursors, the star polymers and the extractables from the polymer networks were characterized by gel permeation chromatography in tetrahydrofuran (THF). The absolute weight-average molecular weight, the number of arms and the hydrodynamic radii of the star polymers, as determined using static and dynamic light scattering in THF, respectively, and their average radii as determined by atomic force microscopy, increased as the volume of the cross-linking mixture increased. The gravimetrically measured degrees of swelling in THF, the network sol fraction and the percentage of branched polymer in the sol fraction decreased as the volume of the cross-linking mixture increased.  相似文献   

19.
Thermoresponsive linear polymers and their corresponding aggregates or nanogels typically show similar thermoresponsive profiles. In this study, the authors demonstrate reversible chemical switching between linear polymers and their cross‐linked nanogels. The linear polymers exhibit sharp thermal transitions typical of common thermoresponsive polymers but the cross‐linked nanogels exhibit “linear” thermal transitions over a relatively broad temperature range. The reversible switching between these two different polymer architectures with distinct thermoresponses represents a unique example of how the responsive properties of smart polymers can be significantly manipulated via polymer architecture engineering.

  相似文献   


20.
Methacrylate star polymers were prepared using the “arm-first” strategy of star polymer formation by the addition of ethylene glycol dimethacrylate to living linear poly(methacrylate) arms synthesised by a trialkylaluminium/alkyllithium initiating system Control over star molar mass is discussed for poly(methyl methacrylate) armed star polymers as is the preparation of star polymers with block copolymer arms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号