首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoporous Au (NPG) films have promising properties, making them suitable for various applications in (electro)catalysis or (bio)sensing. Tuning the structural properties, such as the pore size or the surface-to-volume ratio, often requires complex starting materials such as alloys, multiple synthesis steps, lengthy preparation procedures or a combination of these factors. Here we present an approach that circumvents these difficulties, enabling for a rapid and controlled preparation of NPG films starting from a bare Au electrode. In a first approach a Au oxide film is prepared by high voltage (HV) electrolysis in a KOH solution, which is then reduced either electrochemically or in the presence of H2O2. The resulting NPG structures and their electrochemically active surface areas strongly depend on the reduction procedure, the concentration and temperature of the H2O2-containing KOH solution, as well as the applied voltage and temperature during HV electrolysis. Secondly, the NPG film can be prepared directly by applying voltages that result in anodic contact glow discharge electrolysis (aCGDE). By carefully adjusting the corresponding parameters, the surface area of the final NPG film can be specifically controlled. The structural properties of the electrodes are investigated by means of XPS, SEM and electrochemical methods.  相似文献   

2.
Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, cathodes based on redox-reversible Nb2TiO7 provide a promising alternative. The reversible changes between oxidized Nb2TiO7 and reduced Nb1.33Ti0.67O4 samples are systematically investigated after redox-cycling tests. The conductivities of Nb2TiO7 and reduced Nb1.33Ti0.67O4 are studied as a function of temperature and oxygen partial pressure and correlated with the electrochemical properties of the composite electrodes in a symmetric cell and SOE at 830 oC. Steam electrolysis is then performed using an oxide-ion-conducting SOE based on a Nb1.33Ti0.67O4 composite fuel electrode at 830 oC. The current-voltage and impedance spectroscopy tests demonstrate that the reduction and activation of the fuel electrode is the main process at low voltage; however, the steam electrolysis dominates the entire process at high voltages. The Faradic efficiencies of steam electrolysis reach 98.9% when 3%H2O/Ar/4%H2 is introduced to the fuel electrode and 89% for that with introduction of 3%H2O/Ar.  相似文献   

3.
Electrolysis of ammonia in alkaline electrolyte solution was applied for the production of hydrogen. Both Pt-loaded Ni foam and Pt-Ir loaded Ni foam electrodes were prepared by electrodeposition and served as anode and cathode in ammonia electrolytic cell, respectively. The electrochemical behaviors of ammonia in KOH solution were individually investigated via cyclic voltammetry on three electrodes, i.e. bare Ni foam electrode, Pt-loaded Ni foam electrode and Pt-Ir loaded Ni foam electrode. The morphology and composition of the prepared Ni foam electrode were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Effects of the concentration of electrolyte solution and temperature of electrolytic cell on the electrolysis reaction were examined in order to enhance the efficiency of ammonia electrolysis. The competition of ammonia electrolysis and water electrolysis in the same alkaline solution was firstly proposed to explain the changes of cell voltage with the electrolysis proceeding. At varying current densities, different cell voltages could be obtained from galvanostatic curves. The low cell voltage of 0.58 V, which is less than the practical electrolysis voltage of water (1.6 V), can be obtained at a current density of 2.5 mA/cm2. Based on some experimental parameters, such as the applied current, the resulting cell voltage and output of hydrogen gas, the power consumption per gram of H2 produced can be estimated.  相似文献   

4.
A photoelectrochemical (PEC) cell consisting of an n‐type CdS single‐crystal electrode and a Pt counter electrode with the ruthenium–2,2′‐bipyridine complex [Ru(bpy)3]2+/3+ as the redox shuttle in a non‐aqueous electrolyte was studied to obtain a higher open‐circuit voltage (VOC) than the onset voltage for water splitting. A VOC of 1.48 V and a short‐circuit current (ISC) of 3.88 mA cm?2 were obtained under irradiation by a 300 W Xe lamp with 420–800 nm visible light. This relatively high voltage was presumably due to the difference between the Fermi level of photo‐irradiated n‐type CdS and the redox potential of the Ru complex at the Pt electrode. The smooth redox reaction of the Ru complex with one‐electron transfer was thought to have contributed to the high VOC and ISC. The obtained VOC was more than the onset voltage of water electrolysis for hydrogen and oxygen generation, suggesting prospects for application in water electrolysis.  相似文献   

5.
Using a thin platinum anode in contact with an electrolytic solution, normal electrolysis develops spontaneously to contact glow discharge electrolysis (CGDE) at sufficiently high voltage. During this transition, midpoint voltage (VD) is an important critical value. From VD on, plasma is sustained by direct current glow discharge between the electrode and the electrolyte surface. And H2O2 is the main non-faradaic yield. In this study, effects of conductivity on VD and the concentration of H2O2 have been investigated in Na2SO4 and NaCl solution. The results indicate that VD decreases with the increasing conductivity. And the value of VD and the concentration of H2O2 in NaCl solution are less than those in Na2SO4 solution. The concentration of H2O2 increases steadily and then decreases to maintain a stationary value.  相似文献   

6.
《Electroanalysis》2006,18(23):2314-2323
Some dithiophosphonate derivatives were synthesized and the electrochemical reduction mechanism was investigated by cyclic voltammetry (CV), square wave voltammetry (SWV) and chronoamperometry (CA) in 0.1 M tetrabutylammoniumtetrafluoroborate (TBATFB) in acetonitrile at platinum (Pt) and gold (Au) electrodes. Dithiophosphonates showed a cyclic voltammetric reduction peak at about ?1.1 V at Pt and ?1.3 V at Au electrode (vs. Ag/Ag+) in this media. It was also shown that dithiophosphonates can be determined quantitatively in acetonitrile using a calibration graph. The number of electrons transferred were calculated as 2 using ferrocene as a reference compound at the UME electrode. Mechanism of dithiophosphonates was also examined on Pt and Au electrodes and electrochemical reduction of dithiophosphonates seems to follow an EC mechanism with an irreversible electron transfer step. The reaction product in the bulk electrolysis experiment was isolated and identified using proton‐coupled P‐31 NMR, 13C‐NMR and IR spectroscopy. The adsorption tests for dithiophosphonates were revealed that no strong or weak adsorption phenomena exist on both Pt and Au electrodes. Simulation curves were acquired by DigiSim 3.03 version to investigate the reduction mechanism and to estimate the kinetic parameters for electrochemical and chemical steps.  相似文献   

7.
This work investigated the inactivation of Microcystis aeruginosa (MA) with contact glow discharge electrolysis (CGDE). The influences of applied voltage, current and treatment time on the inactivation rate were critically examined. Based on the above results, the optimal conditions were chosen to sufficiently utilize chemically active species and enhance the inactivation of MA. Under the optimal conditions (voltage: 530 V; current: 30 mA; treatment time: 20 min), the inactivation rate of algae was more than 90% within 5 days incubation after inoculating. At the same time, the concentrations of Chlorophyll-a and dehydrogenase decreased, which demonstrated that 20 min CGDE treatment could effectively inhibit the growth of MA and caused deterioration of cell integrity. The present work would provide strong evidence to support the utilization of CGDE on the inactivation of MA in aqueous solution.  相似文献   

8.
In the search for optimized cathode materials for high‐temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near‐ambient‐pressure X‐ray photoelectron spectroscopy (NAP‐XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3?δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity.  相似文献   

9.
采用热分解法制备了一元、二元贵金属形稳阳极(DSA),并用扫描电子显微镜(SEM)、X射线衍射(XRD)、能量散射X射线谱(EDS)等测试技术对所制备电极的表面形貌、成分组成等进行分析表征;在煤浆电解过程中,采用两电极体系,对所制备电极的电催化活性进行了测试。结果表明,催化涂层中Ru、Ir主要以氧化物或合金的形式存在,而Pt主要以金属单质或合金的形式存在,用所制备的电极作为阳极,电解煤浆10h以后,电流大小和气体的生成速率比较稳定,在整个电解过程中,H2气的电解效率一直接近100%,而此时阳极产物的电解效率为40%左右。与Ti/Pt电极相比,电极的催化活性均有较大的提高,其中Ti/Pt-RuO2(1∶1)和Ti/Pt-IrO2(1∶1)电极的活性最好。  相似文献   

10.
Electroconduction of anodic oxide films on zirconium in 0.1 M Na2SO4 is studied. The films are formed in a galvanostatic regime on single-crystal and polycrystalline iodide-refined zirconium, as well as on electrodes manufactured from a rod obtained by hot extrusion of zirconium iodide melted in an arc furnace and from a plate of iodide-refined zirconium of the I-100 brand. Electrophysical properties of the films are compared on the basis of a model of Frenkel defects, which constitute a system of noninteracting donor centers in the oxide, and a model that describes the formation of a space charge from the donor centers in the oxide (exponential distribution of traps over the films’ bulk). It is shown that experimental current-voltage curves cannot be described by a single model throughout the entire voltage range. At low voltages (<12 V), the Frenkel model is more preferable. In terms of this model, the experimental results can be linearized in the lnI vs. U 1/2 coordinates. At higher voltages, it is more convenient to describe experimental data within the space-charge model in the I vs. U2 or ln(I/U) vs. U coordinates. It is discovered that the technique, which is used for preliminary metallurgical treatment, and the structure of the substrate metal affect parameters of electron conduction in anodic oxide films.  相似文献   

11.
Compared to Pt or Pd electrodes, Au is a poor catalyst for the direct anodic oxidation of HCOOH, but the formation of Au surface oxides in acidic solutions is accompanied by a fast oxidation of HCOOH. This fast reaction is not simply a secondary reaction of Au surface oxides since those oxides are kinetically stable in HCOOH solutions. They do oxidize HCOOH only via a slow and purely electrochemical process which occurs on free Au sites and is “driven” by oxide reduction. The fast HCOOH oxidation is due to a highly reactive intermediate which is able either to form stable Au oxides AunOm or to react with HCOOH. Our results are consistent with the model that by the charge transfer step a reactive non-equilibrium {Au…O> species is formed which converts to stable equilibrium oxides AunOm after migration and rearrangement steps. Pre-equilibrium <Au…O> oxidizes HCOOH and this oxidation is of lower order with respect to <Au…O> compared with the formation of AunOm.  相似文献   

12.
固体氧化物电解池是一种高效、环境友好型的能量转换器件,可以直接将电能转化为化学能. 本文介绍了近年来作者课题组在固体氧化物电解池直接用于CO2还原的研究进展,并以阴极材料为主着重讨论了金属陶瓷电极和混合导电型钙钛矿氧化物电极的研究工作,最后展望了未来固体氧化物电解池直接电解CO2的研究思路和方向.  相似文献   

13.
《Electroanalysis》2004,16(16):1318-1323
The electrochemical behavior of NO2 at Au/Nafion, Pt/Nafion and Pt‐Au/Nafion electrodes was investigated by using electrochemical and SEM methods, respectively. It was found that the Pt‐Au/Nafion electrode showed higher electrocatalytic activity than Pt/Nafion and Au/Nafion electrodes. The net current density of Au/Nafion electrode decayed significantly during the reaction, though it showed high initial value. Pt/Nafion and Pt‐Au/Nafion electrodes, on the contrary, showed good stability. A quantitative determination of NO2 concentration was carried out at Pt‐Au/Nafion electrode and a satisfactory linear relationship was found for the NO2 concentration in the range of 0–100 ppm.  相似文献   

14.
Metal (M) oxide (M: Ir, Os, Pd, Pt, Rh, Ru) together with MaO2 and MnO2 alone, were coated on SnO2 films and the anode behavior was examined in 1.0 N H2SO4, 1.0 N NaOH and 1.0, N NaCl aqueous solutions at 25°. The results are compared with those of DSA and of metallic Pt.  相似文献   

15.
In this work LaNiO3 perovskite-type oxide, prepared by a self-combustion method, was optimized for activity and stability as an anode material for water electrolysis. A full electrochemical study was conducted in order to kinetically characterize electrodes prepared using carbon paper as a base for porous gas-diffusion electrodes in alkaline media, regarding water oxidation and oxygen reduction reactions at room temperature. An electrode stability study was performed by potential cycling and at constant current density, using cyclic voltammetry and electrochemical impedance spectroscopy to check on stability after cycling with complementary scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) analysis of fresh and degraded electrodes. Comparison was made using nickel foam as a support for LaNiO3 deposition. Carbon instability in the potential region of interest contrasted with the lower contact resistance between the oxide and support of the Ni foam. Higher metal oxide loadings and dimensional stability were also possible.  相似文献   

16.
This study is concerned with the electrocatalytic evolution of oxygen gas at manganese oxide nanorods modified Pt, Au and GC electrodes in 0.5 M KOH solution. The electrochemical measurements revealed a significant enhancement of the electrocatalytic activity of the Pt, Au and GC electrodes towards the oxygen evolution reaction (OER) upon the electrodeposition of manganese oxide nanoparticles (nano-MnOx), that is, the onset potentials of the OER at the modified Pt, Au and GC electrodes are more negative by about 300, 550 and 300 mV, respectively, compared with the bare (i.e., unmodified) electrodes. MnOx is electrodeposited in a porous nano-texture structure which covers the entire surface of the substrates homogeneously. The MnOx of a single crystalline manganite phase (γ-MnOOH) plays a vital role as a catalytic mediator, which facilitates the charge transfer during the water oxidation into molecular oxygen and thus the OER is accomplished at less positive potentials.  相似文献   

17.
The electrochemical depositions of Pt microparticles and KI film were successfully carried out on glassy carbon electrodes (GCE), gold electrodes (GE), and indium tin oxide electrodes (ITO). The electrochemical studies of Pt micro/KI film on GCE show that the film was stable, active at pH 1.5 electrolyte solutions. The Pt microparticle/KI film modified ITO electrodes were examined by using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The SEM and AFM results show that the Pt particle sizes were in the range of 120 nm–1.4 μm, respectively. The proposed film on GCE shows efficient electrocatalysis for oxygen, Cr2O reduction by using cyclic voltammetry. Further the electrochemical oxidation of sodium meta‐arsenite (As(III)), H2O2 were successfully carried out and the detection of H2O2 in real samples has been validated.  相似文献   

18.
超重力强化氯碱电解反应   总被引:1,自引:0,他引:1  
将超重力场应用到氯碱电解过程中, 采用线性扫描法、计时电流法和交流阻抗法研究了超重力对析氢反应和析氯反应的影响, 并进一步考察了氯碱电解槽电压随重力系数的变化规律. 结果表明, 超重力能够强化析氢反应和析氯反应的进行; 相对于常重力条件, 气泡更容易从电解液中溢出, 溶液电阻随重力系数增加而降低; 氯碱电解槽电压也随重力系数的增加而降低, 并且电流密度越大, 槽电压降低的程度越大.  相似文献   

19.
The underpotential deposition of copper onto polycrystalline rhodium was studied as a function of the degree of oxidation of the electrode surface in acidic media using potentiodynamic techniques. Surface oxidation of the rhodium electrode was carried out using a triangular sweep potential between E L (lower limit) and E U (upper limit: 0.94≤E U≤1.4 V). Cu electrodeposition was performed at the same time as the total or partial reduction of the oxidized species. The surface oxides produced at E U≤1.09 V were completely reduced during Cu electrodeposition. In this case, the potentiodynamic I-E patterns for oxidative dissolution of Cu were characterized by three anodic peaks located at 0.41 V (peak I), 0.47 V (peak II) and 0.59 V (peak III) and the coverage degree by Cu, θCu, was on the order of a monolayer. Surface oxides produced at E U>1.09 V were partially reduced during the copper electrodeposition. In this case, the I-E profiles exhibited only two anodic peaks (II and III) and θCu was <1. The Rh-oxygen species that remain on the electrode surface block the active sites of lower energy and modify the binding energy of strongly adsorbed Cu. Electronic Publication  相似文献   

20.
在辉光放电分解乙醇制氢过程中, 高能电子在反应中起到了最为关键的作用, 非法拉第效应使得电流效率获得大幅度提升, 产物产量远远高于理论产量. 本文研究了乙醇水溶液辉光放电等离子体电解制氢的过程. 实验研究发现, 辉光放电分解乙醇水溶液的产物主要以H2和CO为主, 还有少量的C2H4、CH4、O2和C2H6. H2体积分数能达到59%以上, CO为20%左右. 通过对影响辉光放电的因素进行实验后发现: 乙醇体积分数的大小不会影响辉光放电的伏安特性参数; 电导率的提高会使‘Kellogg 区’收窄, 同时使放电尽快进入辉光放电. 此外, 乙醇体积分数越高H2体积分数越低, 产气速率在乙醇体积分数为30%和80%附近时达到极大值; 提高放电电压和电导率对辉光放电的影响规律是相类似的, 其实质都是增大了辉光放电加载在等离子鞘层两端的电压,H2体积分数基本不随二者的变化而变化, 但提高溶液的电导率更有利于减少辉光放电引起的焦耳热.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号