首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phospholipase A1 (PLA1) is an enzyme that cleaves an ester bond at the sn-1 position of glycerophospholipids, producing a free fatty acid and a lysophospholipid. PLA1 activities have been detected both extracellularly and intracellularly, which are well conserved in higher eukaryotes, including fish and mammals. All extracellular PLA1s belong to the lipase family. In addition to PLA1 activity, most mammalian extracellular PLA1s exhibit lipase activity to hydrolyze triacylglycerol, cleaving the fatty acid and contributing to its absorption into the intestinal tract and tissues. Some extracellular PLA1s exhibit PLA1 activities specific to phosphatidic acid (PA) or phosphatidylserine (PS) and serve to produce lysophospholipid mediators such as lysophosphatidic acid (LPA) and lysophosphatidylserine (LysoPS). A high level of PLA1 activity has been detected in the cytosol fractions, where PA-PLA1/DDHD1/iPLA1 was responsible for the activity. Many homologs of PA-PLA1 and PLA2 have been shown to exhibit PLA1 activity. Although much has been learned about the pathophysiological roles of PLA1 molecules through studies of knockout mice and human genetic diseases, many questions regarding their biochemical properties, including their genuine in vivo substrate, remain elusive.  相似文献   

2.
The hydrolytic activity of phospholipase A2 (PLA2) against the dipalmitoylphosphatidylcholine monolayer formed at the nitrobenzene-water interface has been studied under the control of the potential drop across the monolayer. The activities of both porcine pancreatic and Naja naja PLA2S was the highest when the potential of the nitrobenzene phase was 60 mV negative with respect to that of the aqueous phase. The local electrostatic interaction between the positively charged domain, the recognition site, of PLA2 molecules with the negatively charged substrate side of the interface, where zwitterionic substrate molecules and negatively charged product molecules were adsorbed, is an important factor in determining the interfacial enzymatic activity. Irreversible adsorption of PLA2 molecules on the substrate monolayer is confirmed, giving unequivocal evidence for the scooting mode of hydrolysis by PLA2.  相似文献   

3.
This work reports the development of an automatic methodology based on the use of 1-anilinonaphthalene-8-sulfonate (ANS) as an interfacial fluorescent probe for detecting the hydrophobic environment shift around the probe, caused by the hydrolytic action of PLA2 on the liposomes. The implementation of this reaction in a sequential injection analysis (SIA) system along with the use of the mixing chambers permitted the evaluation of PLA2 activity and assessment of the inhibitory effect of the non-steroidal anti-inflammatory drugs (NSAIDs) on PLA2 activity.Several studies were performed with the aim of establishing the appropriate flow system configuration: the liposome substrate; PLA2 and ANS optimum concentrations and incubation times before and after the enzyme addition. Based on these studies, the optimum reaction conditions were selected. It was shown that PLA2 is effectively inhibited by the NSAIDs tested (meloxicam, tolmetin and ibuprofen) and by the α-lipoic acid, used as a positive control.Results obtained from the flow system are in agreement with those provided by the comparison batch procedures. The proposed methodology is in fact more efficient and rapid than the comparison batch experiments, enabling the exact timing of fluidic manipulations and precise control of the reaction conditions.  相似文献   

4.
Phospholipase A2 (PLA2) is an enzyme that cleaves fatty acids from the sn-2 position of membrane phospholipids. Intracellular PLA2 has been shown to be important for the generation of arachidonic acid, which leads to the synthesis of a wide range of eicosanoid paracrine hormones. Furthermore, secretory PLA2 in the serum has been reported to exhibit important immune activities. In this study, BODIPY™ FL C16 was used as a fluorescent probe to measure PLA2 activity in the serum of the American alligator. The activity measured was dependent on the amounts of serum and labeled bacteria incubated. The phospholipase activity was also time-dependent, with near peak activities observed within 20-30 min. In addition, the observed activity was titrated away by increasing concentrations of unlabeled bacteria, indicating that the activity observed was specifically due to the presence of PLA2. The assay provides rapid results and requires only small amounts of serum.  相似文献   

5.
A facile synthetic procedure for chiral tryptophan derivatives using Negishi cross-coupling reaction of serine-derived iodoalanine with 3-haloindole is described. The best result was obtained when the reaction of N-tosyl-3-bromoindole with N-Cbz-iodoalanine methyl ester was carried out by the combination of Pd2(dba)3 and sterically hindered ferrocenyl ligand Q-PHOS. This reaction condition not only gave the desired tryptophan derivative as high as 76% yield, but also suppressed the formation of undesired products, the dehalogenated indole and the homodimer of indole, which were difficult to separate. This reaction was extended to the synthesis of various tryptophan derivatives having substituents on the benzene ring. The characteristic of this reaction is the practical biomimetic synthesis of chiral tryptophan derivatives in one-step.  相似文献   

6.
The chemical modification of N-acetyl-β-d-glucosaminidase (EC3.2.1.30) from viscera of green crab (Scylla serrata) has been first studied. The modification of indole groups of tryptophan of the enzyme by N-bromosuccinimide can lead to complete inactivation, accompanying the absorption decreasing at 275 nm and the fluorescence intensity quenching at 338 nm, indicating that tryptophan is essential residue to the enzyme. The modification of histidine residue, the carboxyl groups, and lysine residue inactivates the enzyme completely or incompletely. The results show that imidazole groups of histidine residue or sulfhydryl residues, the carboxyl groups of acidic amino acid, amino groups of lysine residue, and indole groups of tryptophan were essential for the catalytic activity of enzyme, while the results demonstrate that the disulfide bonds and the carbamidine groups of arginine residues are not essential to the enzyme’s function.  相似文献   

7.
Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.  相似文献   

8.
Indole, being the main chromophore of amino acid tryptophan and several other biologically relevant molecules like serotonin, melatonin, has prompted considerable theoretical and experimental interest. The current work focuses on the investigation of substitution effect on the ground and excited electronic states of indole using computational quantum chemistry. Having three close-lying excited electronic states, the vibronic coupling effect becomes extremely important yet challenging for the photophysics and photochemistry of indole. Here, we have evaluated the performance of time-dependent density functional theory against available experimental and ab initio results from the literature. The electronic effects on the excited states of indole and indole derivatives e. g. tryptophan, serotonin and melatonin are reported. A bathochromic shift has been observed in the absorption spectrum for the La state. The absorption wavelength increases in the order of indole<tryptophan <serotonin <melatonin. While the contribution of the in-plane small adjacent groups increases the electron density of the indole ring, the out-of-plane long substituent groups have minor effect. The absorption spectra calculated including the vibronic coupling are in good agreement with experiments. These results can be used to estimate the error in photophysical observables of indole derivatives calculated considering indole as a prototypical system.  相似文献   

9.
Stability and wetting properties changes of systems formed of phospholipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) layers covering silica particles or glass slides due to the phospholipase A2 (PLA2) action were determined by zeta potential measurements and the surface free energy evaluation, respectively. The comparison of the zeta potential and surface free energy, which was evaluated from advancing and receding contact angles via applying models of interfacial interactions, i.e. van Oss et al. (LWAB) and contact angle hysteresis (CAH), was found to be helpful for better understanding the mechanism of PLA2 action on the lipid layers, what is discussed in the paper.  相似文献   

10.
The hydrogen–deuterium exchange of protonated melatonin and its in vitro oxidation end‐products have been examined by liquid chromatography coupled with ion‐trap mass spectrometry. Specific H/D scrambling of protons in the C2 and C4 positions of the indole ring during gas‐phase fragmentation process was observed for both melatonin and its oxidation products. Collision‐induced dissociation spectra showed losses of variably deuterated NH3, H2O and CH3CONH2. In addition, a similar H/D scrambling behaviour was observed for the oxidation products, obtained from the opening of the indole ring by oxidative attack. Fragmentation pathways are proposed and H/D scrambling has been employed as a fingerprint, allowing identification of N1‐acetyl‐5‐methoxykynurenin (AMK), N1‐acetyl‐N2‐formyl‐5‐methoxykynurenin (AFMK), dehydro‐AFMK and hydroxymelatonin as the oxidation products of melatonin in vitro. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract— The destruction of tryptophanyl residues in trypsin by 280-nm radiation was studied in relation to enzyme inactivation. Quantum yields for destruction of this residue (determined using the pDAB reagent) and for the inactivation of trypsin were measured when the enzyme was exposed to different environmental perturbations. The conformational modifications of trypsin induced in 6 M guanidine-HCl did not alter the rates of tryptophan destruction and enzyme inactivation. However, an enhanced destruction of the tryptophanyl residues was observed when trypsin solutions were irradiated at 60°C in the presence of air. The increased rate of tryptophan destruction at this temperature was not accompanied by a corresponding increase in the inactivation quantum yield. It was concluded that any photochemically induced reactions of this chromophore that are sensitive to conformational modifications or that result in the destruction of the indole ring are not important in the inactivation mechanism of trypsin.  相似文献   

12.
The 13C and 1H nmr spectra of methyltryptophans 2–5 in 0.1 N sodium deuteroxide methanol-d4 were assigned based on 1-D and 2-D nmr techniques, including COSY, inverse-detected direct (HMQC) and long-range (HMBC) correlation. Methyl substituent effects in chemical shifts (SCS) for the indole ring of tryptophan were calculated and compared with those of indole. The correlations were linear except for 4-methyltryptophan, which suggest structural changes in the indole ring of 4-methyltryptophan and 4-methylindole. The results of molecular modeling and NOE experiments supported that suggestion.  相似文献   

13.
Snakebite remains a significant public health burden globally, disproportionately affecting low-income and impoverished regions of the world. Recently, researchers have begun to focus on the use of small-molecule inhibitors as potential candidates for the neutralisation of key snake venom toxins and as potential field therapies. Bitis vipers represent some of the most medically important as well as frequently encountered snake species in Africa, with a number of species possessing anticoagulant phospholipase A2 (PLA2) toxins that prevent the prothrombinase complex from inducing clot formation. Additionally, species within the genus are known to exert pseudo-procoagulant activity, whereby kallikrein enzymatic toxins cleave fibrinogen to form a weak fibrin clot that rapidly degrades, thereby depleting fibrinogen levels and contributing to the net anticoagulant state. Utilising well-validated coagulation assays measuring time until clot formation, this study addresses the in vitro efficacy of three small molecule enzyme inhibitors (marimastat, prinomastat and varespladib) in neutralising these aforementioned activities. The PLA2 inhibitor varespladib showed the greatest efficacy for the neutralisation of PLA2-driven anticoagulant venom activity, with the metalloproteinase inhibitors prinomastat and marimastat both showing low and highly variable degrees of cross-neutralisation with PLA2 anticoagulant toxicity. However, none of the inhibitors showed efficacy in neutralising the pseudo-procoagulant venom activity exerted by the venom of B. caudalis. Our results highlight the complex nature of snake venoms, for which single-compound treatments will not be universally effective, but combinations might prove highly effective. Despite the limitations of these inhibitors with regards to in vitro kallikrein enzyme pseudo-procoagulant venom activity, our results further support the growing body of literature indicating the potential use of small molecule inhibitors to enhance first-aid treatment of snakebite envenoming, particularly in cases where hospital and thus antivenom treatment is either unavailable or far away.  相似文献   

14.
In the title compound, C24H20Br2N2O4S, the indole ring system is planar and the S atom has a distorted tetrahedral configuration. The sulfonyl‐bound phenyl ring is orthogonal to the indole ring system and the conformation of the phenyl­sulfonyl substituent with respect to the indole moiety is influenced by intramolecular C—H⃛O hydrogen bonds involving the two sulfonyl O atoms. The mean plane through the acetyl­amido group makes a dihedral angle of 57.0 (1)° with the phenyl ring of the benzyl moiety. In the crystal, glide‐related mol­ecules are linked together by N—H⃛O hydrogen bonds and C—H⃛π interactions to form molecular chains, which extend through the crystal. Inversion‐related chains are interlinked by C—H⃛π interactions to form molecular layers parallel to the bc plane. These layers are interconnected through π–π interactions involving the five‐ and six‐membered rings of the indole moiety.  相似文献   

15.
A simple and efficient one-pot two-step synthesis of substituted 3-aminoarylquinolines has been achieved from 2-nitrobenzaldehyde and indoles under microwave irradiation. Firstly 2-nitrobenzaldehydes is reduced to 2-aminobenzaldehyde in situ by commonly used chemo selective reductant SnCl2 followed by condensation of indole. The acidic nature of the resultant reaction mixture due to SnCl2 helps in the condensation and facile ring opening of indole leading to the formation of 3-aminoarylquinoline derivatives in good to moderate yields.  相似文献   

16.
Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide-distearoylphosphatidylethanolamine (DSPE-PEG750) lipopolymer concentration on phospholipase A2 (PLA2) catalyzed hydrolysis of liposomes composed of stearoyloleoylphosphatidylcholine (SOPC). The characteristic PLA2 lag-time was determined by fluorescence and the degree of lipid hydrolysis was followed by HPLC analysis. Particle size and zeta-potential were measured as a function of DSPE-PEG750 lipopolymer concentration. A significant decrease in the lag-time, and hence an increase in enzyme activity, was observed with increasing concentrations of the anionic DSPE-PEG750 lipopolymer lipids. The observed decrease in lag-time might be related to changes in the surface potential and the PLA2 lipid membrane affinity.  相似文献   

17.
There has been considerable interest in the photochemistry of tryptophan in connection with ultraviolet inactivation of enzymes. Earlier flash photolysis work has demonstrated that the hydrated electron (e-aq) is an initial product in the irradiation of indole derivatives, accompanied by a longer-lived transient absorption near 500 nm attributed to an aromatic radical species[1–5]. Similar transients were observed in a recent flash photolysis study of lysozyme[6] in which it was proposed that inactivation is a consequence of electron ejection from 1 to 2 essential tryptophan residues in the active center. However, there has been uncertainty concerning the tryptophan radical structure and its relationship to the triplet state and radical spectra reported for tryptophan photolysis in low-temperature rigid media. This note reports a flash photolysis investigation of L-tryptophan (Trp) and 1-Methyl-L-tryptophan (1-MeTrp) undertaken to clarify these points. The flash photolysis apparatus and methods employed are described in Ref. [6].  相似文献   

18.
Photoreaction of indole containing compounds with chloroform and other trichlorocompounds generates products with redshifted fluorescence. In proteins, this reaction can be used for the fluorescent detection of proteins. Little characterization of products generated through the photochemical reaction of indoles with halocompounds has been done, yet is fundamental for the development of other fluorophores, protein labeling agents, and bioactive indole derivatives. Here, we have characterized which isomers form in the photoreaction between tryptophan and chloroform using 1H‐NMR of tryptophan and methylated derivatives to reveal that the two major products that are formed result from modification at the 4‐ and 6‐carbon positions of the indole ring. Reaction at position 6 generates 6‐formyl tryptophan and the reaction at position 4 generates an imine because the formyl derivative that is initially formed reacts further with the tryptophan amine group. The spectroscopic properties and product molecular weights of photoproducts formed from photoreaction of tryptophan with other trihalo and monohalocompounds are also determined. The indole ring of tryptophan can be modified with various additions from halocompounds, including the addition of labels to the indole ring via methylene groups. This opens possibilities for generating novel tryptophan based fluorophores and protein labeling strategies using this photochemistry.  相似文献   

19.
We have developed a novel procedure for the oxidative cleavage of indole carbon double bonds in the presence of H2O2 using plant cell cultures as a catalytic system. The oxidative procedure has some advantages, such as mild reactions, good yields, easy work-up and safety.  相似文献   

20.
Reactions of α-nitrocinnamic acids esters with indole and its derivatives lead to the formation of the products of alkylation at the C3-reaction center of the heterocycle. The hydrogenation of the adduct of 1-methylindole and α-nitro-β-phenylacrylate on the Raney nickel catalyst afforded indolylaminopropanoate, that was used for the synthesis of ethyl 2-acetylamino-3-(1-methylindol-3-yl)-3-phenylpropanoate, a precursor of the methylated in the indole ring phenyl-substituted tryptophan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号