首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The octacarbonyl cation and anion complexes of actinide metals [An(CO)8]+/− (An=Th, U) are prepared in the gas phase and are studied by mass-selected infrared photodissociation spectroscopy. Both the octacarbonyl cations and anions have been characterized to be saturated coordinated complexes. Quantum chemical calculations by using density functional theory show that the [Th(CO)8]+ and [Th(CO)8] complexes have a distorted octahedral (D4h) equilibrium geometry and a doublet electronic ground state. Both the [U(CO)8]+ cation and the [U(CO)8] anion exhibit cubic structures (Oh) with a 6A1g ground state for the cation and a 4A1g ground state for the anion. The neutral species [Th(CO)8] (Oh; 1A1g) and [U(CO)8] (D4h; 5B1u) have also been calculated. Analysis of their electronic structures with the help on an energy decomposition method reveals that, along with the dominating 6d valence orbitals, there are significant 5f orbital participation in both the [An]←CO σ donation and [An]→CO π back donation interactions in the cations and anions, for which the electronic reference state of An has both occupied and vacant 5f AOs. The trend of the valence orbital contribution to the metal–CO bonds has the order of 6d≫5f>7s≈7p, with the 5f orbitals of uranium being more important than the 5f orbitals of thorium.  相似文献   

2.
N‐Heterocyclic carbene (NHC) based systems are usually exploited in the exploration of catalytic mechanisms and processes in organocatalysis, and homo‐ and heterogeneous catalysis. However, their molecular structures have not received adequate attention. The NHC proligand methylenebis(N‐butylimidazolium) has been synthesized as the acetonitrile solvate of the diiodide salt, C15H26N42+·2I·CH3CN [1,1′‐methylenebis(3‐butylimidazolium) diiodide acetonitrile monosolvate], and fully characterized. An interesting cation–anion connection pattern has been identified in the crystal lattice, in which three iodide anions interact simultaneously with the cisoid‐oriented cation. A Hirshfeld surface analysis reveals the predominance of hydrogen bonding over anion–π interactions. This particular arrangement is observed in different methylene‐bridged bis(imidazolium) cations bearing chloride or bromide counter‐anions. Density functional theory (DFT) calculations with acetonitrile as solvent reproduce the geometry of the title cation.  相似文献   

3.
The ammonia chemical ionization desorption spectra of N,N-dimethyl quaternary ammonium iodides in addition to high protonated molecular ion [M + H]+ intensity, show signals for an ion radical composed of N-methyl abstracted salt cation and ammonia [C + NH3? CH3]. These ions corresponding to the cation +2 show increased importance in the chemical ionization mode, using the same reagent gas. The technique of chemical ionization desorption appears suitable for the analysis of salts, and thus for the determination of the molecular weight of both anion and cation.  相似文献   

4.
The solid state structures of three nitroformate (NF) salts were determined using single crystal X‐ray crystallography. The NF anion was found to be a non‐planar moiety which adopts either the commonly observed C2v conformation or distorted propeller conformation (D3) in the case of the silver salts, or, a C2 conformation in the case of the potassium salt. This latter C2 conformation has been uniquely observed for potassium nitroformate. All structures exhibit cation‐anion interactions that influence the structure of the anion. The 13C and 14N NMR spectra of the NF anion show broad singlets, which indicates the equivalence of the nitro groups in solution within the NMR time‐scale. In addition, the vibrational and mass spectra of potassium nitroformate and silver nitroformate monohydrate were recorded. Furthermore, the gaseous decomposition products of potassium nitroformate at 25 °C were detected using IR spectroscopy and mass spectrometry.  相似文献   

5.
The methods of cyclic voltammetry, ESR electrolysis, and quantum chemical simulation were used to study the tert-butanol (tert-BuOH) oxidation mechanism in the presence of mediator cation radicals of pyrazine-di-N-oxide, 2,5-di-Me- and 2,3,5,6-tetra-Me-pyrazine-di-N-oxdides. This study was carried out on carbon glass (CG) and Pt electrodes in 0.1 M LiClO4 solution in acetonitrile and on Au electrode in tert-butanol containing 0.05 M LiClO4. The ESR spectra of cation and anion radicals of aromatic di-N-oxides were recorded in tert-BuOH. The quantum chemical simulation of the reaction between pyrazine-di-N-oxide radical cation and C-H bond in tert-BuOH was performed. The results were explained in the terms of the general two-electron oxidation mechanism of tert-BuOH in the complex with aromatic di-N-oxide cation radical as mediator.  相似文献   

6.
Ionic liquids (ILs) containing the tris(pentafluoroethyl)trifluorophosphate anion [FAP] have attracted increased attention due to their unique properties including ultrahigh hydrophobicity, hydrolytic stability, and wide electrochemical window. In this study, the solvation parameter model is used via gas chromatography to characterize the solvation interactions of seven ILs containing amino, ester, and hydroxyl functional groups appended to the cation and paired with [FAP], as well as three ILs containing the bis[(trifluoromethyl)sulfonyl]imide anion [NTf2]. The role of the functional groups, nature of the counter anion, and cation type on the system constants were evaluated. ILs containing [FAP] possessed lower hydrogen bond basicity than NTf2-based ILs having the same cationic component; in the case of hydroxyl-functionalized cations, the presence of [FAP] led to an enhancement of the hydrogen bond acidity, relative to the NTf2-analogs. The system constants support the argument that [FAP] weakly coordinates the cation and any appended functional groups, promoting properties of the cation which might be masked by stronger interactions with other anion systems. The chromatographic performance of the IL stationary phases was evaluated by examining the retention behavior and separation selectivity for chosen analytes. The results from this work can be used as a guide for choosing FAP-based ILs capable of exhibiting desired solvation properties while retaining important physical properties including high thermal stability and high hydrophobicity. Figure In this study, the solvation parameter model is used via gas chromatography to characterize the solvation interactions of seven ILs containing amino, ester, and hydroxyl functional groups appended to the cation and paired with tris(pentafluoroethyl)trifluorophosphate [FAP], as well as three ILs containing the bis[(trifluoromethyl)sulfonyl]imide anion [NTf2]. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

8.
The electrochemical synthesis is an underestimated synthesis protocol, which can lead to unexpected results. We obtained an unusual CuI complex salt with a pentanuclear anion and a heptanuclear cation. The anion [Cu5(StBu)6] features a trigonal prism coordination motif with a twisted arrangement. The cation [Cu7(StBu)6(bipy)3]+ is structurally almost identical to the anion and shares therefore basic building principles. These Cu–S skeletons with additional N donor functions in the cation have relevance to biological copper proteins. Besides structural discussion and analysis, a theoretical study was performed to determine stabilizing effects. This is accomplished by means of DFT with a triple‐zeta basis set and the TPSSh functional in order to highlight bonding interactions and to understand d10–d10 interactions, which are assigned a major stabilizing part. This is realized through Wiberg bond analysis and frontier orbital analysis of both ions.  相似文献   

9.
The paradigm of supramolecular chemistry relies on the delicate balance of noncovalent forces. Here we present a systematic approach for controlling the structural versatility of halide salts by the nature of hydrogen bonding interactions. We synthesized halide salts with hydroxy-functionalized pyridinium cations [HOCnPy]+ (n=2, 3, 4) and chloride, bromide and iodide anions, which are typically used as precursor material for synthesizing ionic liquids by anion metathesis reaction. The X-ray structures of these omnium halides show two types of hydrogen bonding: ‘intra-ionic’ H-bonds, wherein the anion interacts with the hydroxy group and the positively charged ring at the same cation, and ‘inter-ionic’ H-bonds, wherein the anion also interacts with the hydroxy group and the ring system but of different cations. We show that hydrogen bonding is controllable by the length of the hydroxyalkyl chain and the interaction strength of the anion. Some molten halide salts exhibit a third type of hydrogen bonding. IR spectra reveal elusive H-bonds between the OH groups of cations, showing interaction between ions of like charge. They are formed despite the repulsive interaction between the like-charged ions and compete with the favored cation-anion H-bonds. All types of H-bonding are analyzed by quantum chemical methods and the natural bond orbital approach, emphasizing the importance of charge transfer in these interactions. For simple omnium salts, we evidenced three distinct types of hydrogen bonds: Three in one!  相似文献   

10.
The IR and Raman spectra and conformations of the ionic liquid 1‐ethyl‐3‐methyl‐1H‐imidazolium tetrafluoroborate, [EMIM] [BF4] ( 6 ), were analyzed within the framework of scaled quantum mechanics (SQM). It was shown that SQM successfully reproduced the spectra of the ionic liquid. The computations revealed that normal modes of the EMIM+?BF ion pair closely resemble those of the isolated ions EMIM+ and BF , except for the antisymmetric BF stretching vibrations of the anion, and the out‐of‐plane and stretching vibrations of the H? C(2) moiety of the cation. The most plausible explanation for the pronounced changes of the latter vibrations upon ion‐pair formation is the H‐bonding between H? C(2) and BF . However, these weak H‐bonds are of minor importance compared with the Coulomb interactions between the ions that keep them closely associated even in dilute CD2Cl2 solutions. According to the ‘gas‐phase’ computations, in these associates, the BF anion is positioned over the imidazolium ring of the EMIM+ cation and has short contacts not only with the H? C(2) of the latter, but also with a proton of the Me? N(3) group.  相似文献   

11.
The 1:1 proton‐transfer compound of the potent substituted amphetamine hallucinogen (R)‐2‐amino‐1‐(8‐bromobenzo[1,2‐b;5,4‐b′]difuran‐4‐yl)propane (common trivial name `bromodragonfly') with 3,5‐dinitrosalicylic acid, namely 1‐(8‐bromobenzo[1,2‐b;5,4‐b′]difuran‐4‐yl)propan‐2‐aminium 2‐carboxy‐4,6‐dinitrophenolate, C13H13BrNO2+·C7H3N2O7, forms hydrogen‐bonded cation–anion chain substructures comprising undulating head‐to‐tail anion chains formed through C(8) carboxyl–nitro O—H...O associations and incorporating the aminium groups of the cations. The intrachain cation–anion hydrogen‐bonding associations feature proximal cyclic R33(8) interactions involving both an N+—H...Ophenolate and the carboxyl–nitro O—H...O associations and aromatic π–π ring interactions [minimum ring centroid separation = 3.566 (2) Å]. A lateral hydrogen‐bonding interaction between the third aminium H atom and a carboxyl O‐atom acceptor links the chain substructures, giving a two‐dimensional sheet structure. This determination represents the first of any form of this compound and is in the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen‐bonded chain substructures provided by the anions, which accommodate the aminium proton‐donor groups of the cations and give crosslinking, and to the presence of the cation–anion aromatic ring π–π interactions.  相似文献   

12.
We describe a electrochemically driven molecular shuttle, in which shuttling takes place by means of fullerene radical‐anion recognition that results in a very low operation potential (E1/2=?0.580 V vs. decamethylferrocene). This has been achieved by introducing positive charges on the macrocycle, which strengthen the existing π–π interactions between the macrocycle and the electrogenerated fullerene radical anion by means of an electrostatic component. In addition, the synthesis of such a molecular shuttle has been accomplished by developing a new synthetic approach that exploits the controlled translocation of the macrocycle as a selective protecting group.  相似文献   

13.
The crystal structure of the title compound, K[(CN)2CC(O)NH2)] or K+·C4H2N3O, conventionally abbreviated as Kcdm, where cdm is carbamoyldi­cyano­methanide, is described. The bond lengths and angles of the cdm cation are comparable to those reported previously for [M(cdm)2(H2O)4]·2H2O (M = Ni, Mn and Co). The K atoms are coordinated to four nitrile N atoms and two carbonyl O atoms in a distorted trigonal prismatic fashion, with two further N atoms semicoordinated through the centers of two prism side faces. This coordination leads to the formation of mixed anion–cation sheets parallel to the ab plane, which are joined together via hydrogen‐bonding interactions. The cdm anion is potentially useful for the formation of transition metal coordination polymers, in which magnetic superexchange could occur through a bidentate cdm bridge. Kcdm provides a model compound by which the molecular geometry of the cdm anion can be analyzed.  相似文献   

14.
15.
The asymmetric unit of the optically resolved title salt, C8H12N+·C4H5O4S, contains a 1‐phenylethanaminium monocation and a thiomalate (3‐carboxy‐2‐sulfanylpropanoate) monoanion. The absolute configurations of the cation and the anion are determined to be S and R, respectively. In the crystal, cation–anion N—H...O hydrogen bonds, together with anion–anion O—H...O and S—H...O hydrogen bonds, construct a two‐dimensional supramolecular sheet parallel to the ab plane. The two‐dimensional sheet is linked with the upper and lower sheets through C—H...π interactions to stack along the c axis.  相似文献   

16.
The bis­(tri­fluoro­methane­sulfonyl)­imidate anion crystallizes with Rb as the title dioxane 1:2 solvate, Rb+·CF3SO2NSO2CF3·2C4H8O2, with the anion in a transoid conformation, as opposed to the cisoid form typically seen when there are significant cation–anion interactions. The RbI cation is eight‐coordinate, interacting with one anion in a chelating fashion and with two other anions through the remaining sulfonyl O atoms. The latter interactions link ion pairs through the formation of Rb2O2 dimers about inversion centers at (0, , 0) and (, , 0), forming extended columns which run parallel to the a axis of the unit cell. Rb–dioxane bridges crosslink these salt columns in the (010), (001) and (011) directions, resulting in a three‐dimensional network solid. One dioxane solvent mol­ecule is disordered over two half‐occupancy sites.  相似文献   

17.
Anion‐π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion–π interactions suggests that they serve best in stabilizing long‐distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation‐π biocatalysis, reported here is the anion‐π‐catalyzed epoxide‐opening ether cyclizations of oligomers. Only on π‐acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto/kcat >104 m ?1). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks‐type substrate concentration dependence, entropy‐centered substrate destabilization) and opens intriguing perspectives for future developments.  相似文献   

18.
19.
The novel trinuclear copper(II) complexes [CuLCl]2[CuCl4](I) and [CuLBr]2[CuBr4] (II) (where L = N,N′-bis(furaldehyde) diethylenetriamine) were synthesized and structurally characterized by X-ray diffraction. They consist of sandwich units. Both I and II crystallize isomorphously in the monoclinic space group P2/n and feature cation/anion/cation geometry. The novel trinuclear copper(II) complexes I and II shown to be stabilized by a number of weak hydrogen bonds and intermolecular π-π stacking interactions. The article is published in the original.  相似文献   

20.
We report the results of a comprehensive 81Br NMR spectroscopic study of the structure and dynamics of two room temperature ionic liquids (RTILs), 1‐butyl‐3‐methylimidazolium bromide ([C4mim]Br) and 1‐butyl‐2,3‐dimethylimidazolium bromide ([C4C1mim]Br), in both liquid and crystalline states. NMR parameters in the gas phase are also simulated for stable ion pairs using quantum chemical calculations. The combination of 81Br spin‐lattice and spin‐spin relaxation measurements in the motionally narrowed region of the stable liquid state provides information on the correlation time of the translational motion of the cation. 81Br quadrupolar coupling constants (CQ) of the two RTILs were estimated to be 6.22 and 6.52 MHz in the crystalline state which were reduced by nearly 50% in the liquid state, although in the gas phase, the values are higher and span the range of 7–53 MHz depending on ion pair structure. The CQ can be correlated with the distance between the cation–anion pairs in all the three states. The 81Br CQ values of the bromide anion in the liquid state indicate the presence of some structural order in these RTILs, the degree of which decreases with increasing temperature. On the other hand, the ionicity of these RTILs is estimated from the combined knowledge of the isotropic chemical shift and the appropriate mean energy of the excited state. [C4C1mim]Br has higher ionicity than [C4mim]Br in the gas phase, while the situation is reverse for the liquid and the crystalline states. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号