首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the modulation of reactivity of nitrogen dioxide (NO2) in a charged metal–organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl to give nitrosyl chloride (NOCl) and NO3 anions. A high dynamic uptake of 6.58 mmol g−1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g−1. The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV/Vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.  相似文献   

2.
As shown for biotin lipids (Ref. 1), the formation of perfect 2-D crystalline streptavidin domains can also be observed in the plane of desthiobiotin lipid monolayers. The binding constant of streptavidin with desthiobiotin (Ka = 5·1013 mol−1) is lower than that with biotin (Ka = 1015 mol−1) (Ref. 2). By adding free biotin into the subphase a competitive replacement and a detaching of the streptavidin domains from the desthiobiotin lipid monolayer takes place. Streptavidin domains built at receptor lipid monolayers are still functional. As could be shown, there are two biotin binding sites at each protein molecule that are fully accessible to biotin (Ref. 1). This can be proven by the interaction with biotinylated ferritin and fluoresceinated biotin. Further coupling of an anti-FITC-antibody can proceed and a second protein layer can be formed. Using a bifunctional biotin linker a second crystalline streptavidin layer underneath the first one can be obtained.  相似文献   

3.
We report on a programmable all-DNA biosensing system that centers on the use of a 4-way junction (4WJ) to transduce a DNAzyme reaction into an amplified signal output. A target acts as a primary input to activate an RNA-cleaving DNAzyme, which then cleaves an RNA-containing DNA substrate that is designed to be a component of a 4WJ. The formation of the 4WJ controls the release of a DNA output that becomes an input to initiate catalytic hairpin assembly (CHA), which produces a second DNA output that controls assembly of a split G-quadruplex as a fluorescence signal generator. The 4WJ can be configured to produce either a turn-off or turn-on switch to control the degree of CHA, allowing target concentration to be determined in a quantitative manner. We demonstrate this approach by creating a sensor for E. coli that could detect as low as 50 E. coli cells mL−1 within 85 min and offers an amplified bacterial detection method that does not require a protein enzyme.  相似文献   

4.
We present the first example of charged imidazolium functionalized porphyrin-based covalent organic framework (Co-iBFBim-COF-X) for electrocatalytic CO2 reduction reaction, where the free anions (e.g., F, Cl, Br, and I) of imidazolium ions nearby the active Co sites can stabilize the key intermediate *COOH and inhibit hydrogen evolution reaction. Thus, Co-iBFBim-COF-X exhibits higher activity than the neutral Co-BFBim-COF, following the trend of F<Cl<Br<I. Particularly, the Co-iBFBim-COF-I showed nearly 100 % CO2 selectivity at a low full-cell voltage of 2.3 V, and achieved a high CO2 partial current density of 52 mA cm−2 with a turnover frequency of 3018 h−1 at 2.4 V in the anion membrane electrode assembly, which is 3.57 times larger than that of neutral Co-BFBim-COF. This work provides new insight into the importance of free anions in the stabilization of intermediates and decreasing the local binding energy of H2O with active moiety to enhance CO2 reduction reaction.  相似文献   

5.
Hybrid hydrogen-bonded (H-bonded) frameworks built from charged components or metallotectons offer diverse guest-framework interactions for target-specific separations. We present here a study to systematically explore the coordination chemistry of monovalent halide anions, i.e., F, Cl, Br, and I, with the aim to develop hybrid H-bond synthons that enable the controllable construction of microporous H-bonded frameworks exhibiting fine-tunable surface polarity within the adaptive cavities for realistic xenon/krypton (Xe/Kr) separation. The spherical halide anions, especially Cl, Br, and I, are found to readily participate in the charge-assisted H-bonding assembly with well-defined coordination behaviors, resulting in robust frameworks bearing open halide anions within the distinctive 1D pore channels. The activated frameworks show preferential binding towards Xe (IAST Xe/Kr selectivity ca. 10.5) because of the enhanced polarizability and the pore confinement effect. Specifically, dynamic column Xe/Kr separation with a record-high separation factor (SF=7.0) among H-bonded frameworks was achieved, facilitating an efficient Xe/Kr separation in dilute, CO2-containing gas streams exactly mimicking the off-gas of spent nuclear fuel (SNF) reprocessing.  相似文献   

6.
Binary transition-metal oxides (BTMOs) with hierarchical micro–nano-structures have attracted great interest as potential anode materials for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical cauliflower-like CoFe2O4 (cl-CoFe2O4) via a facile room-temperature co-precipitation method followed by post-synthetic annealing. The obtained cauliflower structure is constructed by the assembly of microrods, which themselves are composed of small nanoparticles. Such hierarchical micro–nano-structure can promote fast ion transport and stable electrode–electrolyte interfaces. As a result, the cl-CoFe2O4 can deliver a high specific capacity (1019.9 mAh g−1 at 0.1 A g−1), excellent rate capability (626.0 mAh g−1 at 5 A g−1), and good cyclability (675.4 mAh g−1 at 4 A g−1 for over 400 cycles) as an anode material for LIBs. Even at low temperatures of 0 °C and −25 °C, the cl-CoFe2O4 anode can deliver high capacities of 907.5 and 664.5 mAh g−1 at 100 mA g−1, respectively, indicating its wide operating temperature. More importantly, the full-cell assembled with a commercial LiFePO4 cathode exhibits a high rate performance (214.2 mAh g−1 at 5000 mA g−1) and an impressive cycling performance (612.7 mAh g−1 over 140 cycles at 300 mA g−1) in the voltage range of 0.5–3.6 V. Kinetic analysis reveals that the electrochemical performance of cl-CoFe2O4 is dominated by pseudocapacitive behavior, leading to fast Li+ insertion/extraction and good cycling life.  相似文献   

7.
A molecular rectifier and a bioelectrocatalytic assembly for the reduction of NO3 is provided by reconstitution of a de novo protein with two FeIII–protoporphyrin IX units. The function of the de novo protein can be tuned and tailored within the synthetic protocol.  相似文献   

8.
MoS2, a typical layered transition-metal dichalcogenide, is promising as an electrode material in supercapacitors. However, its low electrical conductivity could lead to limited capacitance if applied in electrochemical devices. Herein, a new nanostructure composed of hollow carbon–MoS2–carbon was successfully synthesized through an l -cysteine-assisted hydrothermal method by using gibbsite as a template and polydopamine as a carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which were made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, were obtained. The platelets showed excellent dispersibility and stability in water, and good electrical conductivity due to carbon provided by the calcination of polydopamine coatings. The hollow nanoplate morphology of the material provided a high specific surface area of 543 m2 g−1, a total pore volume of 0.677 cm3 g−1, and fairly small mesopores (≈5.3 nm). The material was applied in a symmetric supercapacitor and exhibited a specific capacitance of 248 F g−1 (0.12 F cm−2) at a constant current density of 0.1 A g−1; thus suggesting that hollow carbon–MoS2–carbon nanoplates are promising candidate materials for supercapacitors.  相似文献   

9.
Determination of the environment surrounding a protein is often key to understanding its function and can also be used to infer the structural properties of the protein. By using proton-detected solid-state NMR, we show that reduced spin diffusion within the protein under conditions of fast magic-angle spinning, high magnetic field, and sample deuteration allows the efficient measurement of site-specific exposure to mobile water and lipids. We demonstrate this site specificity on two membrane proteins, the human voltage dependent anion channel, and the alkane transporter AlkL from Pseudomonas putida. Transfer from lipids is observed selectively in the membrane spanning region, and an average lipid-protein transfer rate of 6 s−1 was determined for residues protected from exchange. Transfer within the protein, as tracked in the 15N-1H 2D plane, was estimated from initial rates and found to be in a similar range of about 8 to 15 s−1 for several resolved residues, explaining the site specificity.  相似文献   

10.
A series of 1,3-indandione-terminated π-conjugated quinoids were synthesized by alkoxide-mediated rearrangement reaction of the respective alkene precursors, followed by air oxidation. This new protocol allows access to quinoidal compounds with variable termini and cores. The resulting quinoids all show LUMO levels below −4.0 eV and molar extinction coefficients above 105 L mol−1 cm−1. The optoelectronic properties of these compounds can be regulated by tuning the central cores as well as the aryl termini ascribed to the delocalized frontier molecular orbitals over the entire molecular skeleton involving aryl termini. n-Channel organic thin-film transistors with electron mobility of up to 0.38 cm2 V−1 s−1 were fabricated, showing the potential of this new class of quinoids as organic semiconductors.  相似文献   

11.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

12.
The design and control of molecular systems that self‐assemble spontaneously and exclusively at or near an interface represents a real scientific challenge. We present here a new concept, an active seed layer that allows to overcome this challenge. It is based on enzyme‐assisted self‐assembly. An enzyme, alkaline phosphatase, which transforms an original peptide, Fmoc‐FFY(PO42?), into an efficient gelation agent by dephosphorylation, is embedded in a polyelectrolyte multilayer and constitutes the “reaction motor”. A seed layer composed of a polyelectrolyte covalently modified by anchoring hydrogelator peptides constitutes the top of the multilayer. This layer is the nucleation site for the Fmoc‐FFY peptide self‐assembly. When such a film is brought in contact with a Fmoc‐FFY(PO42?) solution, a nanofiber network starts to form almost instantaneously which extents up to several micrometers into the solution after several hours. We demonstrate that the active seed layer allows convenient control over the self‐assembly kinetics and the geometric features of the fiber network simply by changing its peptide density.  相似文献   

13.
The development of high-performance photocatalytic systems for CO2 reduction is appealing to address energy and environmental issues, while it is challenging to avoid using toxic metals and organic sacrificial reagents. We here immobilize a family of cobalt phthalocyanine catalysts on Pb-free halide perovskite Cs2AgBiBr6 nanosheets with delicate control on the anchors of the cobalt catalysts. Among them, the molecular hybrid photocatalyst assembled by carboxyl anchors achieves the optimal performance with an electron consumption rate of 300±13 μmol g−1 h−1 for visible-light-driven CO2-to-CO conversion coupled with water oxidation to O2, over 8 times of the unmodified Cs2AgBiBr6 (36±8 μmol g−1 h−1), also far surpassing the documented systems (<150 μmol g−1 h−1). Besides the improved intrinsic activity, electrochemical, computational, ex-/in situ X-ray photoelectron and X-ray absorption spectroscopic results indicate that the electrons photogenerated at the Bi atoms of Cs2AgBiBr6 can be directionally transferred to the cobalt catalyst via the carboxyl anchors which strongly bind to the Bi atoms, substantially facilitating the interfacial electron transfer kinetics and thereby the photocatalysis.  相似文献   

14.
The precise regulation of nucleation growth and assembly of polymers is still an intriguing goal but an enormous challenge. In this study, we proposed a pre-polymerization strategy to regulate the assembly and growth of polymers by facilely controlling the concentration of polymerization initiator, and thus obtained two kinds of different nanosheet-based porphyrin polymer materials using tetrakis-5,10,15,20-(4-aminophenyl) porphyrin (TAPP) as the precursor. Notably, due to the π–π stacking and doping of TAPP during the preparation process, the obtained PTAPP-nanocube material exhibits a high intrinsic bulk conductivity reaching 1.49×10−4 S m−1. Profiting from the large π-conjugated structure of porphyrin units, closely stacked layer structure and excellent conductivity, the resultant porphyrin polymers, as electrode materials for lithium ion batteries, deliver high specific capacity (≈650 mAh g−1 at the current density of 100 mA g−1), excellent rate performance and long-cycle stability, which are among the best reports of porphyrin polymer-based electrode materials for lithium-ion batteries, to the best of our knowledge. Therefore, such a pre-polymerization approach would provide a new insight for the controllable synthesis of polymers towards custom-made architecture and function.  相似文献   

15.
Adrenocortical carcinoma (ACC) is an aggressive malignancy of the adrenal gland. Mitotane (o ,p' ‐DDD) is the most effective chemotherapy for ACC. According to the literature, mitotane plasma trough concentrations within 14–20 mg L−1 are correlated with a higher response rate with acceptable toxicity. Therapeutic drug monitoring (TDM) of mitotane is therefore recommended. The aim of this study was to propose a robust and simple method for mitotane quantification in plasma. The validation procedures were based on international guidelines. Sample preparation consisted of a single protein precipitation with methanol using 100 μL of plasma. The supernatant was submitted to liquid chromatography coupled with ultra‐violet detection at 230 nm. Mitotane retention time was 7.1 min. The limit of detection was 0.1 mg L−1 and the limit of quantification was 0.78 mg L−1. The assay demonstrated a linear range of 0.78–25 mg L−1 with correlation coefficients (r 2) at 0.999. Inter‐ and intra‐assay precision was <4.85%. Evaluation of accuracy showed a deviation <13.69% from target concentration at each quality control level. This method proved easy and rapid to perform mitotane TDM and required a small volume of sample. It was successfully applied to routine TDM in our laboratory.  相似文献   

16.
Aromatic helical receptors P- 1 and P- 2 were slightly modified by aerobic oxidation to afford new receptors P- 7 and P- 8 with right-handed helical cavities. This subtle modification induced significant changes in the binding properties for chiral guests. Specifically, P- 1 was reported to bind d -tartaric acid (Ka=35500 M−1), used as a template, much strongly than l -tartaric acid (326 M−1). In contrast, its modified receptor P- 7 exhibited significantly reduced affinities for d -tartaric acid (3600 M−1) and l -tartaric acid (125 M−1). More dramatic changes in the affinities and selectivities were observed for P- 2 and P- 8 upon binding of polyol guests. P- 2 was determined to selectively bind d -sorbitol (52000 M−1) over analogous guests, but P- 8 showed no binding selectivity: d -sorbitol (1890 M−1), l -sorbitol (3330 M−1), d -arabitol (959 M−1), l -arabitol (4970 M−1) and xylitol (4960 M−1) in 5% (v/v) DMSO/CH2Cl2 at 25±1 °C. These results clearly demonstrate that even subtle post-modifications of synthetic receptors may significantly alter their binding affinities and selectivities, in particular for guests of long and flexible chains.  相似文献   

17.
The controlled assembly of gold nanoparticles (AuNPs) with the size of quantum dots into predictable structures is extremely challenging as it requires the quantitatively and topologically precise placement of anisotropic domains on their small, approximately spherical surfaces. We herein address this problem by using polyoxometalate leaving groups to transform 2 nm diameter gold cores into reactive building blocks with hydrophilic and hydrophobic surface domains whose relative sizes can be precisely tuned to give dimers, clusters, and larger micelle-like organizations. Using cryo-TEM imaging and 1H DOSY NMR spectroscopy, we then provide an unprecedented “solution-state” picture of how the micelle-like structures respond to hydrophobic guests by encapsulating them within 250 nm diameter vesicles whose walls are comprised of amphiphilic AuNP membranes. These findings provide a versatile new option for transforming very small AuNPs into precisely tailored building blocks for the rational design of functional water-soluble assemblies.  相似文献   

18.
Inspired by the self-assembly of nanoparticle superlattices, we report a general method that exploits long-chain molecular ligands to induce ordered assembly of colloidal nanosheets (NSs), resulting in 2D laminate superlattices with high packing density. Co-assembly of two types of NSs further enables 2D/2D heterostructured superlattices. As a proof of concept, co-assembly of Ti3C2Tx and graphene oxide (GO) NSs followed by thermal annealing leads to MXene-rGO superlattices with tunable microstructures, which exhibit significantly higher capacitance than their filtrated counterparts, delivering an ultrahigh volumetric capacitance of 1443 F cm−3 at 2 mV s−1. Moreover, the as-fabricated binder-free symmetric supercapacitors show a high volumetric energy density of 42.1 Wh L−1, which is among the best reported for MXene-based materials in aqueous electrolytes. This work paves the way toward rational design of 2D material-based superstructures for energy applications.  相似文献   

19.
Polymerization of styrene initiated by triflic acid in CH2Cl2 solution was reexamined, using a new stopped-flow device working in high purity conditions over a wide temperature range. Monomer and styryl cation were followed simultaneously through their respective absorbances at 290 and 340 nm. Initiation is very rapid, and cations concentration reaches a plateau the duration of which is depending on temperature. In our conditions (I0 = 0.5 − 9.10−3M, M0/I0 = 1 to 20), cations concentration is so low at room temperature that it is almost unmeasurable. At −65°C, it is 100 times higher, remains constant for several seconds and complete termination takes place within a minute or more. Such a profile of cation evolution agrees with an equilibrium situation between initiation and a much more temperature-dependent backward deprotonation. Apparent initial rate of initiation is first order with respect to monomer, but the order with respect to initiator was found very high and variable with temperature (from 4.5 at −65°C to 3 at −20°C). This supports the presence, even if they are in low concentration, of acid high agregates, the reactivity of which increases with size. A first order monomer consumption is observed during the plateau, which leads to kp values ranging from 103 at −65°C to 9.104 M−1.s−1 at −10°C (Ep# = 43 kJ.mol−1). The disappearance of cations, which follows the plateau, slows down and becomes unimolecular when monomer consumption is complete, and kt values range from 6.10−2s−1 at −65°C to 1.2s−1 at −23°C (Et# = 33 kJ.mol−1).  相似文献   

20.
The design of photochemical molecular devices (PMDs) for photocatalytic H2 production from water is a meaningful but challenging subject currently. Herein, a Pd2L4 type metal-organic cage (denoted as MOC-Q2) is designed as a PMD, which consists of two catalytic centers (Pd2+) and four photosensitive ligands (L-2) with four pyridine anchoring groups. Subsequently, the MOC-Q2 is combined with TiO2 to form TiO2-MOC-Q2 hybrid materials with different MOC-Q2 contents by a facile sol-gel method, which have micro/mesoporous structures and large surface areas. The optimized TiO2-MOC-Q2 (6.5 wt%) exhibits high H2 production activity (7.9 mmol g−1 h−1 within 5 h) and excellent durability, giving a TON value of 23477 or 11739 (based on MOC-Q2 or Pd moles) after recycling for 7 rounds. By contrast, the pure MOC-Q2 only shows an ordinary photocatalytic H2 production rate (0.84 mmol g−1 h−1 within 5 h) in the homogeneous system. It can be deduced that TiO2 drives the photocatalysis and simultaneously acts as the structure promoter. This study presents a meaningful and distinctive attempt of a new approach for the design and development of MOC-based heterogeneous photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号