首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of carbonyl compounds by oxidation of alcohols is a key reaction in organic synthesis. Such oxidations are typically conducted using catalysts featuring toxic metals and hazardous organic solvents. Considering green and sustainable chemistry, a copper(II) complex of sulfonated 2-quinoxalinol salen (sulfosalqu) has been characterized as an efficient catalyst for the selective oxidation of propargylic, benzylic, and allylic alcohols to the corresponding carbonyl compounds in water when in combination with the oxidant tert-butyl hydroperoxide. The reactions proceed under mild conditions (70 °C in water) to produce yields up to 99% with only 1 mol % of catalyst loading. This reaction constitutes of a rare example of propargylic alcohol oxidation in water, and it makes this process greener by eliminating the use of hazardous organic solvents. Excellent selectivity was achieved with this catalytic protocol for the oxidation of propargylic, benzylic, and allylic alcohols over aliphatic alcohols. The alcohol oxidation is thought to go through a radical pathway.  相似文献   

2.
The concept of a biorefinery for higher-alcohol production is to integrate ethanol and methanol formation via fermentation and biomass gasification, respectively, with, conversion of these simple alcohol intermediates into higher alcohols via the Guerbet reaction. 1-Butanol results from the selfcondensation of ethanol in this multistep reaction occurring on a single catalytic bed. Combining methanol with ethanol gives a mixture of propanol, isobutanol, and 2-methyl-1-butanol. All of these higher alcohols are usefulas solvents, chemical intermediates, and fuel additives and, consequently, have higher market values than the simple alcohol intermediates. Several new catalysts for the condensation of ethanol and alcohol mixtures to higher alcohols were designed and tested under a variety of conditions. Reactions of methanol ethanol mixtures gave as high as 100% conversion of the ethanol to form high yields of isobutanol with smaller amounts of 1-propanol, the amounts in the mixture depending on the starting mixture. The most successful catalysts are multifunctional with basic and hydrogen transfer components.  相似文献   

3.
The growing climate crisis inspires one of the greatest challenges of the 21st century—developing novel power sources. One of the concepts that offer clean, non-fossil electricity production is fuel cells, especially when the role of fuel is played by simple organic molecules, such as low molecular weight alcohols. The greatest drawback of this technology is the lack of electrocatalytic materials that would enhance reaction kinetics and good stability under process conditions. Currently, electrodes for direct alcohol fuel cells (DAFCs) are mainly based on platinum, which not only provides a poor reaction rate but also readily deactivates because of poisoning by reaction products. Because of these disadvantages, many researchers have focused on developing novel electrode materials with electrocatalytic properties towards the oxidation of simple alcohols, such as methanol, ethanol, ethylene glycol or propanol. This paper presents the development of electrode materials and addresses future challenges that still need to be overcome before direct alcohol fuel cells can be commercialized.  相似文献   

4.
Riboflavin‐derived photocatalysts have been extensively studied in the context of alcohol oxidation. However, to date, the scope of this catalytic methodology has been limited to benzyl alcohols. In this work, mechanistic understanding of flavin‐catalyzed oxidation reactions, in either the absence or presence of thiourea as a cocatalyst, was obtained. The mechanistic insights enabled development of an electrochemically driven photochemical oxidation of primary and secondary aliphatic alcohols using a pair of flavin and dialkylthiourea catalysts. Electrochemistry makes it possible to avoid using O2 and an oxidant and generating H2O2 as a byproduct, both of which oxidatively degrade thiourea under the reaction conditions. This modification unlocks a new mechanistic pathway in which the oxidation of unactivated alcohols is achieved by thiyl radical mediated hydrogen‐atom abstraction.  相似文献   

5.
The metabolism of amines is governed by a variety of enzymes such as amine oxidase, flavoenzyme, and cytochrome P-450. A wide variety of compounds are produced such as ammonia and alkaloids in selective and clean oxidation reactions that proceed under mild reaction conditions. Simulation of the functions of these enzymes with simple transition metal complex catalysts may lead to the discovery of biomimetic, catalytic oxidations of amines and related compounds. Indeed, metal complex catalyzed oxidations have been found to proceed with high efficiency. The first section of this review discusses the dehydrogenative oxidations of amines with transition metal catalysts by transition metal catalysts that simulate amine oxidase. The second section highlights the catalytic oxidation of secondary amines to nitrones by simulation of flavoenzymes. The third section describes the simulation of the function of cytochrome P-450 with lowvalent ruthenium complexes and peroxides. Biomimetic ruthenium-catalyzed oxidations of tertiary amines, secondary amines, and other substrates such as amides, β-lactams, nitriles, alcohols, alkenes, ketones, and even nonactivated hydrocarbons can be performed selectively under mild conditions. These three general approaches provide highly useful strategies for synthesis of fine chemicals and biologically active compounds such as alkaloids, amino acids, and β-lactams.  相似文献   

6.
氮氧自由基TEMPO:选择氧化醇的高效有机小分子催化剂*   总被引:1,自引:0,他引:1  
醇被氧化为相应的醛或酮是有机合成中重要的官能团转换反应之一。自从Anelli法(TEMPO/NaBr/NaOCl)发现以来,由于所具有的醇被氧化为相应的醛或酮是有机合成中重要的官能团转换反应之一。自从Anelli法(TEMPO/NaBr/NaOCl)发现以来,由于所具有的高活性和高选择性, 有机小分子催化剂2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)催化醇的氧化反应成为温和条件下醇选择氧化的一个重要方法,并在实验室和工业生产中广泛应用。最近有关TEMPO催化醇氧化反应的研究,主要集中在开发用于分子氧对醇绿色氧化的催化体系和目的在于实现催化剂回收再用的TEMPO固载化研究两个领域上。本文以此为重点,综述了TEMPO催化醇氧化反应的发展和最近研究进展。  相似文献   

7.
Fe and Ru pincer‐type catalysts are used for the racemization of benzylic alcohols. Racemization with the Fe catalyst was achieved within 30 minutes under mild reaction conditions, with a catalyst loading as low as 2 mol %. This reaction constitutes the first example of an iron‐catalyzed racemization of an alcohol. The efficiency for racemization of the Fe catalyst and its Ru analogue was evaluated for a wide range of sec‐benzylic alcohols. The commercially available Ru complex proved to be highly robust and even tolerated the presence of water in the reaction mixture.  相似文献   

8.
According to textbooks, tertiary alcohols are inert towards oxidation. The photocatalysis of tertiary alcohols under highly defined vacuum conditions on a titania single crystal reveals unexpected and new reactions, which can be described as disproportionation into an alkane and the respective ketone. In contrast to primary and secondary alcohols, in tertiary alcohols the absence of an α‐H leads to a C?C‐bond cleavage instead of the common abstraction of hydrogen. Surprisingly, bonds to methyl groups are not cleaved when the alcohol exhibits longer alkyl chains in the α‐position to the hydroxyl group. The presence of platinum loadings not only increases the reaction rate but also opens up a new reaction channel: the formation of molecular hydrogen and a long‐chain alkane resulting from recombination of two alkyl moieties. This work demonstrates that new synthetic routes may become possible by introducing photocatalytic reaction steps in which the co‐catalysts may also play a decisive role.  相似文献   

9.
A series of chromium(III) Schiff base complexes immobilized on MCM-41 were prepared and characterized by various physicochemical and spectroscopic methods. The complexes were used for the selective oxidation of alcohols by 30% hydrogen peroxide without any organic solvent, phase transfer catalyst or additive. The immobilized complexes proved to be effective catalysts and generally exhibited much higher catalytic performance than their corresponding homogeneous analogs. The catalytic performance of the immobilized complexes was also found to be closely related to the Schiff base ligands used. Under the optimal reaction conditions, secondary alcohols, cyclic alcohols and benzyl alcohol were prevailingly oxidized to their corresponding ketones or aldehydes.  相似文献   

10.
An efficient catalytic system consisting of vanadyl sulfate/sodium nitrite was disclosed previously for the oxidation of benzylic alcohols into aldehydes with molecular oxygen.However,the roles of catalyst components were not investigated.In this paper,we examined catalytic oxidation of benzyl alcohol as a model reaction,especially by infrared spectroscopy.The role of each component is discussed including nitrite,vanadyl,sulphate,and water.Sodium nitrite could be converted into nitrate and nitric acid.The vanadium(IV)could be smoothly oxidized into vanadium(V)under mild and acidic conditions without any organic ligands.The transformation of sulfate and bisulfate,the cessation of an induction period,and the oxidation of benzyl alcohol were closely interrelated.The multiple roles of water are discussed,including reduction of the induction period,participation in redox cycles of nitric compounds,deactivation of vanadium,and as a byproduct of oxidation.This study contributes to further development of aerobic oxidation using vanadium based catalysts.  相似文献   

11.
Achieving precise control of active species on solid surfaces is one of the most important goals in the development of highly functionalized heterogeneous catalysts. The treatment of hydroxyapatites with PdCl(2)(PhCN)(2) gives two new types of hydroxyapatite-bound Pd complexes. Using the stoichiometric hydroxyapatite, Ca(10)(PO(4))(6)(OH)(2), we found that monomeric PdCl(2) species can be grafted on its surface, which are easily transformed into Pd(0) particles with narrow size distribution in the presence of alcohols. Such metallic Pd species can effectively promote alcohol oxidation using molecular oxygen and are shown to give a remarkably high TON of up to 236 000. Another monomeric Pd(II) phosphate complex can be generated at a Ca-deficient site of the nonstoichiometric hydroxyapatite, Ca(9)(HPO(4))(PO(4))(5)(OH), affording a catalyst with Pd(II) structure and high activity for the Heck and Suzuki reactions. To the best of our knowledge, the PdHAP are one of the most active heterogeneous catalysts for both alcohol oxidation under an atmospheric O(2)() pressure and the Heck reaction reported to date. These Pd catalysts are recyclable in the above organic reactions. Our approach to catalyst preparation based on the control of Ca/P ratios of hydroxyapatites represents a particularly attractive method for the nanoscale design of catalysts.  相似文献   

12.
Oxidation of alcohols to the corresponding aldehydes or ketones is one of the most fundamental reactions in organic chemistry [1,2]. Some of the products of the oxidation exhibit an important role in the organic synthesis as well as pharmaceutical synthesis. In most reactions, the lanthanide complexes show satisfied catalytic activities for some compounds. Furthermore, there has been increasing interest in the lanthanide complexes and several reports have appeared in the literature [3, 4]. But the exploitation of these complexes for the oxidation of some organic substrates has been limited. Here we reported a method for the preparation and the catalytic properties as well as the recycling of lanthanide complexes in oxidation of alcohols.The synthetic procedure for the polymer supported lanthanide complexes is shown as following(scheme 1):●-NH2+CICH2COOH(C2Hs)3N→●-NHCH2COOHM=Ce(Ⅲ), Tb(Ⅲ), Sm(Ⅲ)scheme 1The oxidation of benzyl alcohol was carried out in the presence of iodosylbenzene by the polymer supported Ce(Ⅲ), Tb(Ⅲ) and Sm(Ⅲ) catalysts at 80℃ for 4.0h, the yields of benz-aldehyde are as following (table 1):Table 1 Oxidation of benzyl alcohol with the supported catalysts**Reaction condition: benzyl alcohol 0.1 mmol, iodosylbenzene 0.15mmol,catalyst 0.2mg, 80℃ for 4.0h in 1,2-dichloroethane.It can be seen from the table that the Tb(Ⅲ) complex shows higher catalytic activity for the oxidation of benzyl alcohol. Further investigation is now being carded on to optimize the results.  相似文献   

13.
合成了一系列过渡金属Zn取代的Keggin型磷钨杂多酸的季铵盐,采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)等方法表征了杂多化合物的结构.并将其用于苯甲醇无溶剂氧化合成苯甲醛的反应,考察了催化剂种类、反应条件对苯甲醇氧化的影响.实验结果表明,在无任何溶剂的情况下,Zn取代的Keggin型磷钨四丁基铵盐具有最佳的催化活性,反应时间仅为30 min,苯甲醇的转化率可以达到95.6%,苯甲醛的选择性达到了96.4%.在对杂多酸季铵盐结构的研究基础上,对可能的反应机理进行了初步探讨.  相似文献   

14.
由简单小分子通过 C–C键偶联来构筑复杂多样的大分子是有机合成的重要方向.传统的 C–C键偶联反应一般使用卤代烃和金属有机化合物为底物,具有原子效率低、有害废弃物排放等缺点.因此,迫切需要发展一种绿色高效的 C–C键偶联方法.其中,以醇类化合物作为底物通过“氢转移”(脱氢/aldol缩合/加氢)实现 C–C键偶联的途径受到广泛关注.该方法具有诸多优点:(1)醇类化合物来源广泛、价格低廉、相对安全;(2)只产生 H2和 H2O,没有其它副产物.但由于醇类化合物(特别是仲醇)脱氢困难,该偶联反应条件一般比较苛刻.我们使用 O2来辅助仲醇脱氢,采用离子交换树脂负载的 Au6Pd纳米颗粒为催化剂,实现了温和条件下伯醇和仲醇的偶联反应.而且发现在氧化气氛下,反应过程中发生了“氢转移”现象,产物为饱和酮类化合物.通过设计对照实验并结合 XAFS(X–射线吸收光谱)表征结果,我们揭示了在 Au6Pd/resin催化剂上发生“氢转移”反应的机理. AuPd/resin催化剂采用离子交换–NaBH4还原法制备. TEM照片显示 Au, Pd以及双金属 AuPd纳米颗粒均匀分散在载体上,平均粒径为2–4 nm,而且随着 Au/Pd比例减小, AuPd纳米颗粒的粒径逐渐减小. XRD谱图显示,随着 Au/Pd比例减小, Au(111)衍射峰逐渐向高角度发生偏移,说明 AuPd形成了合金.我们以苯甲醇和(±)-1-苯乙醇氧化偶联为探针反应考察了催化剂的催化性能.结果显示,以 Au/resin和 Pd/resin为催化剂时,产物为不饱和酮.而以 AuPd/resin为催化剂时,转化率显著提高,说明 AuPd之间存在明显的协同作用.而且随着 Au/Pd比例增加,产物逐渐由不饱和酮转变为饱和酮,当 Au/Pd≥6时,产物完全为饱和酮,说明反应过程中发生了“氢转移”.为验证这一推测,我们以苯甲醇和查尔酮为底物在相同条件下反应.结果显示,以 Au/resin和 Pd/resin为催化剂时,查尔酮没有转化.而以 AuPd/resin为催化剂时,查尔酮大部分转化为饱和酮(转化率为91%),验证了反应中发生了“氢转移”的推测.为研究“氢转移”发生的机理,我们采用 XAFS对催化剂价态进行了表征. Pd元素 K边 X射线吸收谱图显示,随着催化剂中 Au/Pd比例的增加,E0值逐渐减小,说明 Pd价态逐渐降低. EXAFS拟合数据表明,随催化剂中 Au/Pd比例增加, Pd–O配位数逐渐减小.基于以上结果推断,在 AuPd/resin催化剂中,随着 Au/Pd比例的增加, Pd的抗氧化能力显著增强,更多的 Pd以 Pd(0)形式存在.结合文献报道结果,我们认为正是催化剂中的 Pd(0)夺取了醇的βC–H后生成了 Pd–H,而 Pd–H是“氢转移”反应的催化剂.另一方面,有文献报道,在氧化气氛下, O2也可以辅助脱除醇的βC–H.为区分 Pd(0)和 O2在脱除醇βC–H中的作用,我们对 Au6Pd/resin在惰性气氛下对伯醇(苯甲醇)或仲醇((±)-1–苯乙醇)转化的催化性能进行了考察.结果显示,苯甲醇可以转化为苯甲酸(收率为23%),而(±)-1–苯乙醇则完全没有转化.这说明伯醇可以直接被催化剂(Pd(0))活化,而仲醇的活化则必须有 O2参与.综上,我们提出伯醇和仲醇氧化偶联反应的机理: Au6Pd/resin催化伯醇转化为醛(同时产生 Pd–H物种),而 O2辅助活化仲醇转化为酮.醛和酮发生 aldol缩合生成α,β不饱和酮,该中间物种被 Pd–H加氢生成饱和产物.  相似文献   

15.
Possibly because homogeneous palladium catalysts are not typical borrowing hydrogen catalysts and ligands are thus ineffective in catalyst activation under conventional anaerobic conditions, they had not been used in the N‐alkylation reactions of amines/amides with alcohols in the past. By employing the aerobic relay race methodology with Pd‐catalyzed aerobic alcohol oxidation being a more effective protocol for alcohol activation, ligand‐free homogeneous palladiums are successfully used as active catalysts in the dehydrative N‐alkylation reactions, giving high yields and selectivities of the alkylated amides and amines. Mechanistic studies implied that the reaction most probably proceeds via the novel relay race mechanism we recently discovered and proposed.  相似文献   

16.
A green and highly efficient iron‐catalyzed one‐pot oxidation/Knoevenagel tandem reaction for the synthesis of α, β‐unsaturated nitriles from secondary alcohols and malononitrile has been achieved. The reaction performed under mild conditions with air as an oxidant, and provided the corresponding oxidation/Knoevenagel prudocts in good to excellent yields within short times avoiding the use of noble metal catalysts and bases. Remarkably, water is the only byproduct in this methodology. The reaction could be performed on a gram scale under the standard reaction conditions.  相似文献   

17.
The development of noble-metal-free heterogeneous catalysts is promising for selective oxidation of aromatic alcohols; however, the relatively low conversion of non-noble metal catalysts under solvent-free atmospheric conditions hinders their industrial application. Now, a holey lamellar high entropy oxide (HEO) Co0.2Ni0.2Cu0.2Mg0.2Zn0.2O material with mesoporous structure is prepared by an anchoring and merging process. The HEO has ultra-high catalytic activity for the solvent-free aerobic oxidation of benzyl alcohol. Up to 98 % conversion can be achieved in only 2 h, to our knowledge, the highest conversion of benzyl alcohol by oxidation to date. By regulating the catalytic reaction parameters, benzoic acid or benzaldehyde can be selectively optimized as the main product. Analytical characterizations and calculations provide a deeper insight into the catalysis mechanism, revealing abundant oxygen vacancies and holey lamellar framework contribute to the ultra-high catalytic activity.  相似文献   

18.
A convenient two-step, one-pot procedure was developed for the conversion of primary alcohols to carboxylic acids. The alcohol was first treated with NaOCl and TEMPO under phase-transfer conditions, followed by NaClO2 oxidation in one pot. This reaction is applicable to a wide range of alcohols and the mild reaction conditions are compatible with many sensitive functional groups, including electron-rich aromatic rings, acid-labile isopropylidene ketal and glycosidic linkages, and oxidation-prone thioacetal, p-methoxybenzyl, and allyl moieties. Several glycosaminoglycans such as heparin, chondroitin, and hyaluronic acid oligosaccharides have been synthesized in high yields by using this new oxidation protocol.  相似文献   

19.
The factors determining pH effects on principal catalytic reactions in low-temperature fuel cells (oxygen reduction, hydrogen oxidation, and primary alcohols oxidation) are analyzed. The decreasing of hydrogen oxidation rate when passing from acidic electrolytes to basic ones was shown to be due to the electrode surface blocking by oxygen-containing species and changes in the adsorbed hydrogen energy state. In the case of oxygen reduction, the key factors determining the process’ kinetics and mechanism are: the O2 adsorption energy, the adsorbed molecule protonation, and the oxygen reaction thermodynamics. The process’ high selectivity in acidic electrolytes at platinum electrodes is caused by rather high Pt-O2 bond energy and its protonation. The passing from acidic electrolytes to basic ones involves a decrease in the oxygen adsorption energy, both at platinum and nonplatinum catalysts, hence, in the selectivity of the oxygen-to-water reduction reaction. The increase in the methanol and ethanol oxidation rate in basic media, as compared with acidic ones, is due to changes in the reacting species’ structure (because of the alcohol molecules dissociation) on the one hand, and active OHads species inflow to the reaction zone, on the other hand. In the case of ethanol, the above-listed factors determine the process’ increased selectivity with respect to CO2 at higher pHs. Based on the survey and valuation, priority guidelines in the electrocatalysis of commercially important reactions are formulated, in particular, concepts of electrocatalysis at nonplatinum electrode materials that are stable in basic electrolytes, and approaches to the practical control of the rate and selectivity of oxygen reduction and primary alcohols oxidation over wide pH range.  相似文献   

20.
Allyl diethyl phosphate (ADP) was found to function as a stoichiometric hydrogen acceptor in a catalytic oxidation reaction of alcohols with Pd(OAc)2. A variety of acyclic primary and secondary alcohols were oxidized in good yields and under mild conditions to the corresponding aldehydes and ketones, in the presence of Na2CO3 or K2CO3. Simple aliphatic primary alcohols yielded esters, exclusively. Polar ligand solvents (DMF, DMSO) were found to accelerate the reaction. Slow, but high yield reactions were encountered in THF and acetonitrile as solvents. The reactivity of several other allyl systems serving as H-acceptors, and several Pd compounds serving as catalysts, in the above oxidation reaction, was evaluated. It has been experimentally demonstrated (H-NMR) that ADP is capable of generating a π-allyl-Pd complex using a Pd(0) complex. Consequently, a catalytic cycle was proposed for the above oxidation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号