首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Choline geranate (CAGE) ionic liquids (ILs) stabilize insulin, thereby aiding its oral delivery, whereas ethanol (EtOH) affects its stability by disrupting the hydrophobic interactions. In this study, cognizance of the stabilization mechanism of insulin dimer in the presence of both CAGE ILs and EtOH mixtures is achieved through biased and unbiased molecular dynamics (MD) simulations. Here, two order parameters are employed to study the insulin dimer dissociation using well-tempered metadynamics (WT-MetaD). The stability of insulin is found to be strongly maintained until a 0.20 mole fraction of EtOH. Besides, higher concentrations of EtOH marginally affect the insulin stability. Moreover, geranate anions form a higher number of H-bonding interactions with water molecules, which aids insulin stabilization. Conversely, the addition of EtOH minimizes the water-mediated H-bonding interactions of geranate. Additionally, geranate traps the EtOH molecules, thereby preventing the interactions between insulin and EtOH. Furthermore, the free energy landscape (FEL) reveals the absence of dimer dissociation along with noticeable deviations in the distances R and the number of contacts Q. The dimerization free energy of insulin was calculated to be −16.1 kcal/mol at a 0.20 mole fraction of EtOH. Moreover, increments in mole fractions of EtOH effectuate a decrease in the insulin stability. Thus, the present study represents CAGE ILs as efficient insulin dimer stabilizes at low concentrations of EtOH.  相似文献   

2.
    
Sustainable conversion of biomass, including fructose dehydration to 5-hydroxymethylfurfural (HMF), remains a challenge. Fructose can be selectively dehydrated to HMF in dimethyl sulfoxide (DMSO) without addition of an acid catalyst. The role of DMSO is examined starting with either fructose or HMF in DMSO/water. With increasing DMSO content, it is observed that fructose conversion, HMF selectivity, and post-reaction solution acidity increase. Although DMSO degradation to sulfuric acid is a potential source of acidity and reactivity, a barium chloride precipitation test demonstrates that sulfate ions are not detectable after reaction, suggesting that DMSO is stable during reaction at 120 °C and 150 °C with oxygen present. Instead, the majority of the acidic species produced are formic acid, levulinic acid, and humins. These acids have a minimal effect on fructose conversion in DMSO. These results suggest that DMSO promotes fructose conversion mainly through solvation effects and not as an origin of acid catalysis. For HMF stabilization, the optimal molar fraction of DMSO in water is 0.20–0.43. Overall, these results indicate that DMSO can promote fructose dehydration to HMF at 120 °C.  相似文献   

3.
Molecular dynamics simulations show that calix[4]pyrrole (CP) and octafluorocalix[4]pyrrole (8F-CP) are extremely flexible molecules. CP mainly adopts the 1,3-alternate conformation in all the solvents, although the percentage of alternative conformations increases in polar solvents, especially those with good hydrogen-bonding acceptor properties. However, in the case of 8F-CP, the cone conformation is the most populated in some solvents. Transitions between conformers are common and fast, and both CP and 8F-CP can adopt the cone conformation needed for optimum interaction with anions more easily than would be predicted on the basis of previous gas-phase calculations. Furthermore, the present studies show that when a fluoride anion is specifically placed initially in close proximity to CP and 8F-CP in their respective 1,3-alternate conformations, an extremely fast change to the cone conformation is observed in both cases. The results suggest that preorganization does not represent a major impediment to anion-binding for either CP or 8F-CP, and that ion-induced conformational changes can follow different mechanisms depending on the solvent and the chemical substituents present on the calix[4]pyrrole beta-pyrrolic positions.  相似文献   

4.
5.
6.
    
Computational drug design is increasingly becoming important with new and unforeseen diseases like COVID-19. In this study, we present a new computational de novo drug design and repurposing method and applied it to find plausible drug candidates for the receptor binding domain (RBD) of SARS-CoV-2 (COVID-19). Our study comprises three steps: atom-by-atom generation of new molecules around a receptor, structural similarity mapping to existing approved and investigational drugs, and validation of their binding strengths to the viral spike proteins based on rigorous all-atom, explicit-water well-tempered metadynamics free energy calculations. By choosing the receptor binding domain of the viral spike protein, we showed that some of our new molecules and some of the repurposable drugs have stronger binding to RBD than hACE2. To validate our approach, we also calculated the free energy of hACE2 and RBD, and found it to be in an excellent agreement with experiments. These pool of drugs will allow strategic repurposing against COVID-19 for a particular prevailing conditions.  相似文献   

7.
8.
We present a short review of recent computational and experimental studies on surfaces of solutions of inorganic salts in polar nonaqueous solvents. These investigations complement our knowledge of aqueous interfaces and show that liquids such as formamide, liquid ammonia, and ethylene glycol can also surface-segregate large polarizable anions like iodide, albeit less efficiently than water. For liquids whose surfaces are covered with hydrophobic groups (e.g. methanol), the surface-ion effect all but disappears. Based on the present data a general picture of inorganic-ion solvation at the solution-vapor interface of polar liquids is outlined.  相似文献   

9.
10.
The existence of solvent fluctuations leads to populations of reactant‐state (RS) and transition‐state (TS) configurations and implies that property calculations must include appropriate averaging over distributions of values for individual configurations. Average kinetic isotope effects 〈KIE〉 for NC?+EtCl→NCEt+Cl? in DMSO solution at 30 °C are best obtained as the ratio 〈fRS〉/〈fTS〉 of isotopic partition function ratios separately averaged over all RS and TS configurations. In this way the hybrid AM1/OPLS‐AA potential yields 〈KIE〉 values for all six isotopic substitutions (2° α‐2H2, 2° β‐2H3, α‐11C/14C, leaving group 37Cl, and nucleophile 13C and 15N) for this reaction in the correct direction as measured experimentally. These thermally‐averaged calculated KIEs may be compared meaningfully with experiment, and only one of them differs in magnitude from the experimental value by more than one standard deviation from the mean. This success contrasts with previous KIE calculations based upon traditional methods without averaging. The isotopic partition function ratios are best evaluated using all (internal) vibrational and (external) librational frequencies obtained from Hessians determined for subsets of atoms, relaxed to local minima or saddle points, within frozen solvent environments of structures sampled along molecular dynamics trajectories for RS and TS. The current method may perfectly well be implemented with other QM or QM/MM methods, and thus provides a useful tool for investigating KIEs in relation to studies of chemical reaction mechanisms in solution or catalyzed by enzymes.  相似文献   

11.
12.
13.
Polymer conformations: The picture shows instantaneous conformations of product molecules produced in a catalytic reaction at the head of a polymer chain. The extended (left) and collapsed (right) polymers correspond to chains in good and poor solvent conditions, respectively. The product molecule concentration gradient leads to a directed force on the polymer, so that it functions as a self‐propelled nanomotor.

  相似文献   


14.
Molecular‐dynamics simulations with metadynamics enhanced sampling reveal three distinct binding sites for arginine vasopressin (AVP) within its V2‐receptor (V2R). Two of these, the vestibule and intermediate sites, block (antagonize) the receptor, and the third is the orthosteric activation (agonist) site. The contacts found for the orthosteric site satisfy all the requirements deduced from mutagenesis experiments. Metadynamics simulations for V2R and its V1aR‐analog give an excellent correlation with experimental binding free energies by assuming that the most stable binding site in the simulations corresponds to the experimental binding free energy in each case. The resulting three‐site mechanism separates agonists from antagonists and explains subtype selectivity.  相似文献   

15.
    
Dcdftbmd is a Fortran 90/95 program that enables efficient quantum mechanical molecular dynamics (MD) simulations using divide-and-conquer density functional tight-binding (DC-DFTB) method. Based on the remarkable performance of previous massively parallel DC-DFTB energy and gradient calculations for huge systems, the code has been specialized to MD simulations. Recent implementations and modifications including DFTB extensions, improved computational speed in the DC-DFTB computational steps, algorithms for efficient initial guess charge prediction, and free energy calculations via metadynamics technique have enhanced the capability to obtain atomistic insights in novel applications to nanomaterials and biomolecules. The energy, structure, and other molecular properties are also accessible through the single-point calculation, geometry optimization, and vibrational frequency analysis. The available functionalities are outlined together with efficiency tests and simulation examples. © 2019 Wiley Periodicals, Inc.  相似文献   

16.
17.
The interest on room temperature ionic liquids has grown in the last decades because of their use as all‐purpose solvent and their low environmental impact. In the present work, a new theoretical procedure is developed to study pure ionic liquids within the framework of the quantum mechanics/molecular mechanics method. Each type of ion (cation or anion) is considered as an independent entity quantum mechanically described that follows a differentiated path in the liquid. The method permits, through an iterative procedure, the full coupling between the polarized charge distribution of the ions and the liquid structure around them. The procedure has been tested with 1‐ethyl‐3‐methylimidazolium tetrafluoroborate. It was found that, similar to non‐polar liquids and as a consequence of the low value of the reaction field, the cation and anion charge distributions are hardly polarized by the rest of molecules in the liquid. Their structure is characterized by an alternance between anion and cation shells as evidenced by the coincidence of the first maximum of the anion–anion and cation–cation radial distribution functions with the first minimum of the anion‐cation. Some degree of stacking between the cations is also found. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
19.
20.
A series of 18 nitroxide biradicals derived from bTurea has been prepared, and their enhancement factors ? (1H) in cross‐effect dynamic nuclear polarization (CE DNP) NMR experiments at 9.4 and 14.1 T and 100 K in a DNP‐optimized glycerol/water matrix (“DNP juice”) have been studied. We observe that ? (1H) is strongly correlated with the substituents on the polarizing agents, and its trend is discussed in terms of different molecular parameters: solubility, average e–e distance, relative orientation of the nitroxide moieties, and electron spin relaxation times. We show that too short an e–e distance or too long a T1e can dramatically limit ? (1H). Our study also shows that the molecular structure of AMUPol is not optimal and its ? (1H) could be further improved through stronger interaction with the glassy matrix and a better orientation of the TEMPO moieties. A new AMUPol derivative introduced here provides a better ? (1H) than AMUPol itself (by a factor of ca. 1.2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号