首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈昆峰  薛冬峰 《应用化学》2018,35(9):1067-1075
阳离子氧化还原化学是电化学储能技术中最核心的储能机理,如何高效快速利用氧化还原活性阳离子是发展兼具高功率密度与高能量密度储电技术的关键。 处于胶体状态的阳离子可形成热力学平衡态和非平衡态,具有高反应活性和低离子迁移势垒,展现出独特的电化学特性。 本文着重介绍氧化还原活性阳离子的胶体状态与其在电化学储能上的应用,并从热力学和动力学方面阐述其储能机理,以及活性胶体离子电极和超级电容电池的构筑。 利用胶体的高比表面积、高离子吸附能力和荷电离子梯度分布等特性,创造性地构筑胶体超级电容电池,解决了现有电化学储能电极材料体系中高容量与高功率不能兼具的问题,同时开拓了胶体体系新的应用方向。  相似文献   

2.
Atomically thin sheets of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted interest as high capacity electrode materials for electrochemical energy storage devices owing to their unique properties (high surface area, high strength and modulus, faster ion diffusion, and so on), which arise from their layered morphology and diversified chemistry. Nevertheless, low electronic conductivity, poor cycling stability, large structural changes during metal-ion insertion/extraction along with high cost of manufacture are challenges that require further research in order for TMDs to find use in commercial batteries and supercapacitors. Here, a systematic review of cutting-edge research focused on TMD materials beyond the widely studied molybdenum disulfide or MoS2 electrode is reported. Accordingly, a critical overview of the recent progress concerning synthesis methods, physicochemical and electrochemical properties is given. Trends and opportunities that may contribute to state-of-the-art research are also discussed.  相似文献   

3.
Two dimensional (2D) porous materials have great potential in electrochemical energy conversion and storage. Over the past five years, our research group has focused on Simple, Mass, Homogeneous and Repeatable Synthesis of various 2D porous materials and their applications for electrochemical energy storage especially for supercapacitors (SCs). During the experimental process, through precisely controlling the experimental parameters, such as reaction species, molar ratio of different ions, concentration, pH value of reaction solution, heating temperature, and reaction time, we have successfully achieved the control of crystal structure, composition, crystallinity, morphology, and size of these 2D porous materials including transition metal oxides (TMOs), transition metal hydroxides (TMHOs), transition metal oxalates (TMOXs), transition metal coordination complexes (TMCCs) and carbon materials, as well as their derivatives and composites. We have also named some of them with CQU‐Chen (CQU is the initialism of Chongqing University, Chen is the last name of Lingyun Chen), such as CQU‐Chen‐Co?O‐1, CQU‐Chen‐Ni?O?H‐1, CQU‐Chen‐Zn?Co?O‐1, CQU‐Chen‐Zn?Co?O‐2, CQU‐Chen‐OA?Co‐2‐1, CQU‐Chen‐Co?OA‐1, CQU‐Chen‐Ni?OA‐1, CQU‐Chen‐Gly?Co‐3‐1, CQU‐Chen‐Gly?Ni‐2‐1, CQU‐Chen‐Gly?Co?Ni‐1, etc. The introduction of 2D porous materials as electrode materials for SCs improves the energy storage performances. These materials provide a large number of active sites for ion adsorption, supply plentiful channels for fast ion transport and boost electrical conductivity and facilitate electron transportation and ion penetration. The unique 2D porous structures review is mainly devoted to the introduction of our contribution in the 2D porous nanostructured materials for SC. Finally, the further directions about the preparation of 2D porous materials and electrochemical energy conversion and storage applications are also included.  相似文献   

4.
以超级电容器实验为例,将绿色化学科学研究转化为实验教学的基本设计思路,学习双电层电容器和法拉第准电容器的工作原理、组装及性能测试方法(循环伏安法和恒流充放电法),分析循环伏安曲线、比电容、能量密度和功率密度,总结2者的不同。实践结果表明:电化学基础和科学研究的成功联通,让学生对电化学概念和原理有了更深刻的理解,并获得关于清洁能源储存器件的实践经验,同时也增强了学生的绿色化学素养。  相似文献   

5.
This paper has experimentally proved that hydrogen accumulates in large quantities in metal-ceramic and pocket electrodes of alkaline batteries during their operation. Hydrogen accumulates in the electrodes in an atomic form. After the release of hydrogen from the electrodes, a powerful exothermic reaction of atomic hydrogen recombination with a large energy release occurs. This exothermic reaction is the cause of thermal runaway in alkaline batteries. For the KSL-15 battery, the gravimetric capacity of sintered nickel matrix of the oxide-nickel electrode, as hydrogen storage, is 20.2 wt%, and cadmium electrode is 11.5 wt%. The stored energy density in the metal-ceramic matrix of the oxide-nickel electrode of the battery KSL-15 is 44 kJ/g, and in the cadmium electrode it is 25 kJ/g. The similar values for the KPL-14 battery are as follows. The gravimetric capacity of the active substance of the pocket oxide-nickel electrode, as a hydrogen storage, is 22 wt%, and the cadmium electrode is 16.9 wt%. The density of the stored energy in the active substance oxide-nickel electrode is 48 kJ/g, and in the active substance of the cadmium electrode it is 36.8 kJ/g. The obtained results of the accumulation of hydrogen energy in the electrodes by the electrochemical method are three times higher than any previously obtained results using the traditional thermochemical method.  相似文献   

6.
The increasing demand for high-performance rechargeable energy storage systems has stimulated the exploration of advanced electrode materials. MXenes are a class of two-dimensional (2D) inorganic transition metal carbides/nitrides, which are promising candidates in electrodes. The layered structure facilitates ion insertion/extraction, which offers promising electrochemical characteristics for electrochemical energy storage. However, the low capacity accompanied by sluggish electrochemical kinetics of electrodes as well as interlayer restacking and collapse significantly impede their practical applications. Recently, interlayer space engineering of MXenes by different chemical strategies have been widely investigated in designing functional materials for various applications. In this review, an overview of the most recent progress of 2D MXenes engineering by intercalation, surface modification as well as heterostructures design is provided. Moreover, some critical challenges in future research on MXene-based electrodes have been also proposed.  相似文献   

7.
采用一步溶剂热法在泡沫镍(NF)基底上合成了镍钴氢氧化物、镍铁氢氧化物及镍钴铁氢氧化物3种电极材料,并对其电化学性能进行测试,结果表明:三元镍钴铁金属电极的储能性能要远大于其他2种二元金属电极,其在2 mA·cm-2电流密度下能达到5.11 F·cm-2的面积比电容,并且构筑的非对称超级电容器在功率密度为46.814 ...  相似文献   

8.
杨裕生 《电化学》2020,26(4):443
本文回顾了22年来作者的电化学储能研究活动,共分三个部分. 第一部分叙述高比能量、高比功率储能器件研究,包括锂硫电池研究(硫复合正极材料、锂硫电池制作、锂硼合金作为锂硫电池负极、硫-锂离子电池新体系)、超级电容器研究(超级活性炭、以酚醛树脂为原料制备电容炭、碳纳米管阵列中寄生准电容储能材料、氧化镍干凝胶准电容储能材料、归纳出电容炭材料的性能要求、电容器研制、确定“第四类”超级电容器)、锂离子电池研究(锂离子电池与可再生燃料电池的对决、双变价元素正极材料、磷酸钴锂正极材料、高功率锂离子电池的制作). 第二部分叙述规模储能电池研究,包括液流电池新体系研究(蓄电与电化学合成的双功能液流电池、全金属化合物单液流电池、有机化合物正极的单液流电池)、致力于振兴铅酸电池(推广铅蓄电池新技术、铅炭电池的研究、铅酸电池新型板栅的研究),储能电池(站)的经济效益计算方法. 第三部分叙述电动汽车发展路线研究,包括氢能燃料电池电动汽车、纯电动汽车与混合动力汽车、对我国电动汽车发展路线的建议、力争电动汽车补贴的合理化、坚守电动汽车“节能减排”宗旨、提出“发电直驱电动车”. 最后的结束语谈了三点感悟.  相似文献   

9.
MXenes are recently developed two-dimensional layered materials composed of early transition metal carbides and/or nitrides that provide unique characteristics for biosensor applications. This review presents the recent progress made on the usage and applications of MXenes in the field of electrochemical biosensors, including microfluidic biosensors and wearable microfluidic biosensors, and highlights the challenges with possible solutions and future needs. The multilayered configuration and high conductivity make these materials as an immobilization matrix for the biomolecule immobilization with activity retention and to be explored in the fabrication of electrochemical sensors, respectively. First, how the MXene nanocomposite as an electrode modifier affects the sensing performance of the electrochemical biosensors based on enzymes, aptamer/DNA, and immunoassays is well described. Second, recent developments in MXene nanocomposites as wearable biosensing platforms for the biomolecule detection are highlighted. This review pointed out the future concerns and directions for the use of MXene nanocomposites to fabricate advanced electrochemical biosensors with high sensitivity and selectivity. Specifically, possibilities for developing microfluidic electrochemical sensors and wearable electrochemical microfluidic sensors with integrated biomolecule detection are emphasized.  相似文献   

10.
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.  相似文献   

11.
钴基双金属氧化物MCo2O4(M=Ni、Zn、Mn等)既继承了单一钴金属氧化物(Co3O4、CoO等)高比容量的优点,又引入了新的改性金属元素用于改善其导电性差、倍率性能不佳等缺点,是一种潜在的新型电化学储能材料。本文分类介绍了NiCo2O4、ZnCo2O4、MnCo2O4等钴基双金属氧化物及其复合物的现有研究(包括制备方法、形貌结构、颗粒尺寸及其电化学性能),阐述了改性手段的可能性机理,并对钴基双金属氧化物后续研究提出了一些看法。  相似文献   

12.
钴基双金属氧化物MCo2O4(M=Ni、Zn、Mn等)既继承了单一钴金属氧化物(Co3O4、CoO等)高比容量的优点,又引入了新的改性金属元素用于改善其导电性差、倍率性能不佳等缺点,是一种潜在的新型电化学储能材料。本文分类介绍了NiCo2O4、ZnCo2O4、MnCo2O4等钴基双金属氧化物及其复合物的现有研究(包括制备方法、形貌结构、颗粒尺寸及其电化学性能),阐述了改性手段的可能性机理,并对钴基双金属氧化物后续研究提出了一些看法。  相似文献   

13.
邓筠飞  杜卫民  王梦瑶  位庆贺 《应用化学》2019,36(11):1323-1332
以玉米秸秆为原料,合成了高比表面积(2167 m2/g)的多孔生物质炭材料。 优化实验条件即可获得性能最佳的生物质炭电极材料,其在电流密度为1 A/g时的比电容高达390 F/g。 更重要的是,以所得最佳多孔生物质炭为电极材料,3 mol/L 的KOH溶液为电解质,组装了液相对称超级电容器。 该超级电容器在功率密度为818 W/kg时,其能量密度高达7 Wh/kg,在循环10000圈后的电容保持率为91.1%。 同时,将两个这种超级电容器串联充电之后,能够点亮15个LED灯并驱动小风扇正常工作。 这些结果表明,将基于玉米秸秆的多孔生物质炭作为先进电极材料应用于超级电容器具有较大的实际应用价值。  相似文献   

14.
Graphene, a two-dimensional (2D) layered material has attracted much attention from the scientific community due to its exceptional electrical, thermal, mechanical, biological and optical properties. Hence, numerous applications utilizing graphene-based materials could be conceived in next-generation electronics, chemical and biological sensing, energy conversion and storage, and beyond. The interaction between graphene surfaces with other materials plays a vital role in influencing its properties than other bulk materials. In this review, we outline the recent progress in the production of graphene and related 2D materials, and their uses in energy conversion (solar cells, fuel cells), energy storage (batteries, supercapacitors) and biomedical applications.  相似文献   

15.
制备了Nb_2O_5/石墨烯修饰玻碳电极(Nb_2O_5/RGO/GCE),建立了一种简便、灵敏检测绿原酸的电化学方法。用氧化石墨烯(GO)和五氯化铌(Nb Cl5)一步溶剂热法制备Nb_2O_5/RGO复合材料,并用扫描电子显微镜(SEM)对其进行形貌表征。采用循环伏安法(CV)和方波伏安法(SWV)研究了绿原酸在Nb_2O_5/RGO/GCE上的电化学行为。结果发现,Nb_2O_5/RGO复合材料能显著增强绿原酸的电化学活性。对实验条件(如pH值、扫描速率与富集时间等)进行了优化。在最佳条件下,绿原酸的氧化峰电流与浓度在5.0×10~(-7)~1.2×10~(-5)mol/L范围内呈良好的线性关系,检出限为2.0×10~(-7)mol/L。采用修饰电极测定各种药物中绿原酸的含量,得到加标回收率为96.6%~101.5%。该方法具有良好的灵敏度和稳定性,已成功应用于药物中绿原酸含量的测定。  相似文献   

16.
MXenes因其独特的二维层状结构、较高的比表面积、优异的导电性、良好的表面亲水性和化学稳定性,受到国内外研究者的广泛关注。近年来,研究者普遍采用含氟刻蚀剂(HF与LiF-HCl等)选择性刻蚀MAX相中的A位元素,制备带有丰富表面基团的多层MXenes材料。由于含氟刻蚀剂的污染问题,当前采用更为绿色环保的无氟刻蚀剂(NaOH与ZnCl2等)刻蚀MAX相的研究报道越来越多。MXenes的性能与其结构密切相关,不同制备方法对MXenes的层间距和表面基团的影响很大,进而也影响其性能。基于此,本文总结对比了文献中MXenes的制备方法,概述了MXenes层间距和表面基团的调控方法,同时介绍了MXenes在电化学储能方面的应用,最后对今后MXenes研究所面临的挑战和发展方向进行了展望。  相似文献   

17.
Transition-metal sulfides exaggerate higher theoretical capacities and were considered a type of prospective nanomaterials for energy storage; their inherent weaker conductivities and lower electrochemical active sites limited the commercial applications of the electrodes. The sheet-like nickel cobalt sulfide nanoparticles with richer sulfur vacancies were fabricated by a two-step hydrothermal technique. The sheet-like nanoparticles self-combination by ultrathin nanoparticles brought active electrodes entirely contacted with the electrolytes, benefiting ion diffusion and charges/discharges. Nevertheless, defect engineers of sulfur vacancy at the atomic level raise the intrinsic conductivities and improve the active sites for energy storage functions. As a result, the gained sulfur-deficient NiCo2S4 nanosheets consist of good specific capacitances of 971 F g−1 at 2 A g−1 and an excellent cycle span, retaining 88.7% of the initial capacitance over 3500 cyclings. Moreover, the values of capacitance results exhibited that the fulfilling characteristic of the sample was a combination of the hydrothermal procedure and the surface capacitances behavior. This novel investigation proposes a new perspective to importantly improve the electrochemical performances of the electrode by the absolute engineering of defects and morphologies in the supercapacitor field.  相似文献   

18.
Nowadays sodium-based energy storage systems (Na-based ESSs) have been widely researched as it possesses the possibility to replace traditional energy storage media to become next generation energy storage system. However, due to the irreversible loss of sodium ions in the first cycle, development of Na-based ESSs is limited. Presodiation, as a strategy of adding excess sodium ions to the system in advance, accomplishes the enhancement of electrochemical performance. In this minireview, different presodiation strategies applied in sodium-based energy storage systems will be summarized in detail, their functions and corresponding mechanisms will be discussed as well. Furthermore, the current novel application of presodiation method in other aspects of Na-based ESSs will be mentioned additionally. At last, in the view of present research status of presodiation, issues that can be mitigated are put forward and guidelines are given on how to deliberate in-depth presodiation technology in the future, dedicating to promote the further development of Na-based ESSs.  相似文献   

19.
锂离子电池在全球范围内的广泛应用加剧了对锂资源的消耗,其成本和原料将限制其未来发展。钠与锂具有相似物理化学性质,并且储量丰富。根据锂离子"摇椅式"电池原理,富钠离子化合物可类似富锂离子正极材料,提供可脱嵌的钠离子及结构。钠离子较锂离子大,其可逆脱嵌反应要求材料结构具有较大的容钠位与离子迁移通道。聚阴离子体磷酸钒钠Na_3V_2(PO_4)_3属于钠离子超导体(NASICON)材料,其NASICON结构骨架形成了稳定的容钠位,并且开放的三维离子迁移通道利于提高钠离子的扩散。Na_3V_2(PO_4)_3作为电池正极材料,具有理想的比容量、电压平台与循环稳定性,从而受到了广泛关注。本文首先介绍了Na_3V_2(PO_4)_3结构特点,其次结合团队已有的工作基础对Na_3V_2(PO_4)_3在钠离子电池、混合离子电池、水系电池,混合超级电容器等体系中的应用与反应机理进行了阐述;总结了基于Na_3V_2(PO_4)_3设计的复合材料与结构并探讨了Na_3V_2(PO_4)_3可能存在的问题与未来发展趋势。  相似文献   

20.
The utilization of simple photochemical reactions for the storage of solar energy in the form of chemical energy in energy-rich products has often been considered in the further development and improvement of e. g. simple thermosolar techniques. The hitherto proposed criteria for the qualification of an abiotic photochemical system are, however, mostly of a qualitative nature, so a mutal comparison of the systems is not precise enough. In this article it is shown how a useful correlation on the basis of time-independent experimental data can be achieved and how, from the viewpoint of photochemistry, a comparative classification of known reactions is possible. The following reactions are compared: the [2 + 2]-photocycloadditions of norbornadiene, dimethyl 2,3-norbornadienedicarboxylate, and dicyclopentadienone, the photoisomerization of trans- to cis-diacetylindigo, the photodissociation of nitrosyl chloride as well as a photocatalytic redox reaction. The quantity of material required and storage efficiency are by far the most favorable in the case of trans-diacetylindigo. The main disadvantage of the latter however, is that the energy-rich cis-from rapidly reverts to the stable trans-form at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号