首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐dimensional (2D) palladium nanocube array is achieved on plasma‐etched block copolymer templates, while the well‐aligned nanocubes remain active. Anisotropic nanocubes are site‐selectively assembled on various nanopatterns by capillary force. The nanocube array is proved to be easily tunable, and the dimensional commensurability plays a key role in the configurations of the nanocube assemblies. Not only catalytic nanocube array under confinement but also template for the growth of nanoscale zinc oxide (ZnO) nanorods is exemplified as the potential application of the nanoarray.

  相似文献   


2.
An amphiphilic metallo‐supramolecular poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) diblock copolymer containing a bis(2,2′:6′,2″‐terpyridine)ruthenium(II) complex as a supramolecular connection between the two constituting blocks was used to prepare stable aqueous micelles. The micelles were characterized by dynamic light scattering and atomic force microscopy. Individual micelles were observed together with aggregates of micelles. Only the addition of a large excess of competitive ligand caused the cleavage of the very stable ruthenium complex.  相似文献   

3.
This work reports for the first time a simple and effective approach to trigger a spheres‐to‐ vesicles morphological transition from amphiphilic block copolymer/polyelectrolyte complexes in aqueous solution. Vesicles and large compound vesicles (LCVs) were prepared via complexation of polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) with poly(acrylic acid) (PAA) in water and directly visualized using cryo‐TEM. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on the PAA and PEO blocks of the block copolymer. The findings in this work suggest that complexation between amphiphilic block copolymer and polyelectrolyte is a viable approach to vesicles and LCVs in aqueous media.  相似文献   

4.
5.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

6.
DNA nanotechnology enables the synthesis of nanometer‐sized objects that can be site‐specifically functionalized with a large variety of materials. For these reasons, DNA‐based devices such as DNA origami are being considered for applications in molecular biology and nanomedicine. However, many DNA structures need a higher ionic strength than that of common cell culture buffers or bodily fluids to maintain their integrity and can be degraded quickly by nucleases. To overcome these deficiencies, we coated several different DNA origami structures with a cationic poly(ethylene glycol)–polylysine block copolymer, which electrostatically covered the DNA nanostructures to form DNA origami polyplex micelles (DOPMs). This straightforward, cost‐effective, and robust route to protect DNA‐based structures could therefore enable applications in biology and nanomedicine where unprotected DNA origami would be degraded.  相似文献   

7.
Summary: Thermosensitive association of a diblock copolymer consisting of poly(3‐dimethyl(methacryloyloxyethyl) ammonium propane sulfonate) (PdMMAEAPS), as an upper critical solution temperature (UCST) block, and poly(N,N‐diethylacrylamide) (PdEA), as a lower critical solution temperature (LCST) block, has been investigated by using IR spectroscopy. The ν(CO) and ν(SO) bands of the PdMMAEAPS block and the amide I band of PdEA block critically changed at the UCST and LCST, respectively, indicating that the segmental interaction of each block is altered at each transition.

The double temperature responsiveness of a UCST block and LCST block containing diblock copolymer. Micelles form at temperatures both below the UCST and above the LCST of the blocks.  相似文献   


8.
We demonstrate a strategy for using an optical stimulus to trigger the dissociation of block copolymer (BCP) vesicles in aqueous solution. The BCP, comprising hydrophilic poly(ethylene oxide) (PEO) and a block of poly(methacrylic acid) bearing a number of spiropyran methacrylate comonomer units (P(MAA‐co‐SPMA)), was allowed to firstly self‐assemble into large vesicles in aqueous solution at pH = 3 with protonated carboxylic acid groups, and then become kinetically stable at pH = 8 due to the glassy vesicle membrane of P(MAA‐co‐SPMA). Fast dissociation of the vesicles was achieved through a cascade of events triggered by UV‐induced isomerization from neutral spiropyran to charged merocyanine in the membrane.

  相似文献   


9.
The tunable properties of stimulus‐responsive materials attract great interest in a variety of technological applications. Photonic gels are a new class of these materials, which can be tuned to reflect different wavelengths of light. Controlling this reflected color via temperature‐induced changes of self‐assembled photonic materials is important for their application in sensors and displays. In this work, the thermochromic behavior of a PS–P2VP photonic gel was found to originate from a temperature‐induced change in the pKa of the P2VP blocks. Control was obtained through the manipulation of the solution pH. The findings of this work provide the basis for understanding and controlling the properties of thermochromic block copolymers fostering their use in technologically relevant applications.  相似文献   

10.
11.
We present a combinatorial approach to the synthesis of block copolymer series by anionic polymerization, utilizing a specially designed reactor setup. The setup features one main reactor and three secondary reactors to carry out anionic polymerizations on laboratory‐scale quantities at low temperatures. The implementation was demonstrated with three series of AB‐ and ABC‐block copolymers with identical A‐ and AB‐blocks, respectively. The B‐block in AB‐diblock copolymers and the C‐block in ABC‐triblock copolymers can be varied with respect to block length or chemical constitution. Well‐defined series of block copolymers are useful for advanced optimization of functional block copolymers in nanotechnology applications.

  相似文献   


12.
Summary: A unique and simple method to prepare films with various ordered nanoscopic cylindrical patterns on the surface is reported. Various solutions of gemini surfactants with different spacers were used as a nanotemplate, on which thick polymer films were fabricated by the supramolecular assembly of a native or chemically modified polystyrene‐block‐poly(ethylene/butylene)‐block‐polystyrene (SEBS) triblock copolymer. At the air/polymer surface, normal oriented cylindrical nanodomains formed by poly(ethylene/butylene) (PEB) block associates surrounded by polystyrene (PS) blocks are exhibited. While at the polymer/surfactant solution interface, parallel cylindrical nanodomains formed by PEB block stripes alternating with PS block stripes are observed. The ordered structure of the surface can be adjusted by changing the surfactant and the chemical nature of the polymer. In a special case using Gemini 16‐1‐Ph‐1‐16 and SEBS chemically modified with 2 wt.‐% maleic anhydride, a nearly perfect hexagonal ordered structure is obtained.

The AFM micrograph and associated FFT (inset) of the morphology of a SEBS thick film formed on a 16‐1‐Ph‐1‐16 solution to give a nearly perfect hexagonal ordered structure.  相似文献   


13.
The cylinder‐to‐gyroid transition in a concentrated solution of polystyrene‐block‐polyisoprene in dibutyl phthalate has been studied using rheology and small angle X‐ray scattering. Following an appropriate temperature quench, the oriented cylinder phase transforms to the gyroid structure epitaxially. Remarkably, an intermediate state appears for a deep quench, whereas for a shallow quench the transition proceeds directly; the intermediate state exhibits scattering signatures consistent with a hexagonally perforated layer structure.  相似文献   

14.
15.
We previously reported that ABA‐type triblock copolymers with azobenzene‐containing terminal blocks can be utilized as a light‐induced reworkable adhesive that enables repeatable bonding and debonding on demand. The reworkability was based on the photoisomerization of the azobenzene moiety and concomitant softening and hardening of the azo blocks. Our aim in this study is to investigate the effect of the composition, molecular weight, and block copolymer architectures on the reworkable adhesive properties. For this purpose, we prepared AB diblock, ABA triblock, and 4‐arm (AB)4 star‐block copolymers consisting of polymethacrylates bearing an azobenzene moiety (A block) and 2‐ethylhexyl (B block) side chains and performed adhesion tests by using these block copolymers. As a result, among the ABA block copolymers with varied compositions and molecular weights, the ABA triblock copolymers with an azo block content of about 50 wt % and relatively low molecular weight could achieve an appropriate balance between high adhesion strength and low residual adhesion strength upon UV irradiation. Furthermore, the 4‐arm star‐block structure not only enhances the adhesion strength, but also maintains low residual adhesion strength when exposed to UV irradiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 806–813  相似文献   

16.
The conformational behavior of a single AB block copolymer is studied by Monte Carlo simulation. The A‐A and A‐B interactions have the character of excluded volume interactions while the B units attract each other; the attractive B blocks can move along the chain. The collapse transition of the chain with increasing attraction between the B units is analyzed. Intrachain separation of the A and B units takes place in the course of the chain collapse with the formation of “globule with a tail” conformations. The globule is formed by the attractive moving B blocks while the tail consists of the swollen A segments. The model of AB block copolymer with moving B blocks can describe the behavior of interpolymer complexes between a long macromolecule and shorter polymer chains.

  相似文献   


17.
Virtually transparent films of Aeroxide TiO2 P25 were fabricated via layer‐by‐layer assembly with sodium poly(styrene sulfonate). Nanoscale films are formed on model surfaces for characterization or inside of cylindrical reactors for investigating the catalytic properties. Films are fairly homogeneous and smooth over large areas and show different optical interference colors depending on film thickness. The application‐relevant photocatalytic performance of such films toward on‐flow degradation of hydrogen sulfide under UV‐A irradiation was investigated. Scanning electron microscopy reveals a nanoporous structure allowing for the permeation of gas. Consequently, the catalytic efficiency of the films increases with increasing film thickness retaining a considerable activity of the corresponding nanoparticle powder. Scheme 1 depicts in a general way the functionalized reactor and the principle of the measurement.  相似文献   

18.
19.
Highly porous polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer membranes are prepared using carbohydrates as additives. Therefore α‐cyclodextrine, α‐(D )‐glucose, and saccharose (cane sugar) are tested for the membrane formation of three different PS‐b‐P4VP polymers. The addition of the carbohydrates leads to an increasing viscosity of the membrane solutions due to hydrogen bonding between hydroxyl groups of the carbohydrates and pyridine units of the block copolymer. In all cases, the membranes made from solution with carbohydrates have higher porosity, an improved narrow pore distribution on the surface and a higher water flux as membranes made without carbohydrates with the same polymer, solvent ratio, and polymer concentration.  相似文献   

20.
Polymerization of norbornene has been conducted with [t‐BuNSiMe2(3,6‐t‐Bu2Flu)]TiMe2 ( 1 ) in toluene at 20 °C using modified methylaluminoxane that contained 0.4 mol‐% of triisobutylaluminium (TIBA) (dMMAO(0.4)) or 1.8 mol‐% of TIBA (dMMAO(1.8)). The 1 ‐dMMAO(0.4) catalytic system undergoes a living polymerization of norbornene. The catalysis of norbornene and propylene with the 1 ‐dMMAO(1.8) catalytic system gives markedly different results because of differences in transfer times of the polymers from Ti to TIBA. The successive addition of norbornene and propylene before the complete consumption of the norbornene in the 1 ‐dMMAO(1.8) system gives monodisperse PNB‐block‐poly(propylene‐ran‐norbornene)‐block‐PP terminated with a Ti–PP bond, which is exchanged with TIBA. Hence the repeated addition of the same amount of norbornene and propylene realizes the catalytic synthesis of monodisperse block copolymer in this system.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号