首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of [MII(3,5-DTBCat)(DTBbpy)] (M=Ni ( [Ni] ), Pd ( [Pd] ), and Pt ( [Pt] ); 3,5-DTBCat=3,5-di-tert-butylcatecholato; DTBbpy=4,4′-di-tert-butyl-2,2′-bipyridine) afforded the dimeric {[NiII(3,5-DTBSQ)(DTBbpy)](PF6)}2 ( {[Ni](PF6)}2 ; 3,5-DTBSQ=3,5-di-tert-butylsemiquinonato) and monomeric semiquinonato (SQ) complexes [MII(3,5-DTBSQ)(DTBbpy)](PF6) (M=Pd ( [Pd](PF6) ) and Pt ( [Pt](PF6) )). The negative solvatochromic properties of the SQ complexes allowed us to estimate the relative order of their dipole moments: [Pd](PF6) > [Pt](PF6) > {[Ni](PF6)}2 . The complexes [Pd](PF6) and [Pt](PF6) adopt monomeric structures and are stable in CH2Cl2 and toluene, whereas they gradually disproportionate at room temperature to [M] and 3,5-di-tert-butylbenzoquinone (3,5-DTBBQ) in polar solvents such as THF, MeOH, EtOH, DMF, or DMSO. The results of spectroscopic studies suggested that the oxidized nickel complex adopts a monomeric structure ( [Ni](PF6) ) in CH2Cl2, but a dimeric structure ( {[Ni](PF6)}2 ) in the other investigated solvents. In polar solvents, {[Ni](PF6)}2 may disproportionate to [Ni] and 3,5-DTBBQ at 323 K, thereby demonstrating a significant solvent- and metal-dependence in temperature. The relative activities of {[Ni](PF6)}2 and [M](PF6) toward disproportionation are related to the electrochemically estimated Kdis values in CH2Cl2 and DMF. The present work demonstrates that solvent polarity and the dipole moments of the SQ complexes promote disproportionation, which can be controlled by a judicious choice of the metal ion, solvent, and temperature.  相似文献   

2.
We present a comprehensive study of the structural properties and the thermal expansion behavior of 17 different Prussian Blue Analogs (PBAs) with compositions MII3[(M′)III(CN)6]2·nH2O and MII2[FeII(CN)6nH2O, where MII=Mn, Fe, Co, Ni, Cu and Zn, (M′)III=Co, Fe and n is the number of water molecules, which range from 5 to 18 for these compounds. The PBAs were synthesized via standard chemical precipitation methods, and temperature-dependent X-ray diffraction studies were performed in the temperature range between −150 °C (123 K) and room-temperature. The vast majority of the studied PBAs were found to crystallize in cubic structures of space groups Fm3?m, F4?3m and Pm3?m. The temperature dependence of the lattice parameters was taken to compute an average coefficient of linear thermal expansion in the studied temperature range. Of the 17 compounds, 9 display negative values for the average coefficient of linear thermal expansion, which can be as large as 39.7×10−6 K−1 for Co3[Co(CN)6]2·12H2O. All of the MII3[CoIII(CN)6]2·nH2O compounds show negative thermal expansion behavior, which correlates with the Irving–Williams series for metal complex stability. The thermal expansion behavior for the PBAs of the MII3[FeIII(CN)6]2·nH2O family are found to switch between positive (for M=Mn, Co, Ni) and negative (M=Cu, Zn) behavior, depending on the choice of the metal cation (M). On the other hand, all of the MII2[FeII(CN)6nH2O compounds show positive thermal expansion behavior.  相似文献   

3.
The antiradical activity of the functionalized triphenylantimony(V) catecholates Ph3Sb[4-O(CH2CH2)2N-3,6-DBCat] (I), Ph3Sb[4,5-Piperaz-3,6-DBCat] (II), and Ph3Sb[4-PhN(CH2CH2)2N-3,6-DBCat] (III) (where [4-O(CH2CH2)2N-3,6-DBCat]2?, [4,5-Piperaz-3,6-DBCat]2?, and [4-PhN(CH2CH2)2N-3,6-DBCat]2? are the dianionic ligands 3,6-di-tert-butyl-4-(morpholin-1-yl)-, 3,6-di-tert-butyl-4,5-(piperazine-1,4-diyl)-, and 3,6-di-tert-butyl-4-(4-phenylpiperazin-1-yl)catecholates, respectively) was studied in reactions with the diphenylpicrylhydrazyl radical during autooxidation of unsaturated fatty (oleic and linoleic) acids with lipid peroxidation of Russian sturgeon (Acipenser gueldenstaedti B.) sperm and human blood erythrocytes in vitro as examples. The EC50 and n DPPH values obtained indicate the high antiradical activity of complexes II and III in the reactions with the stable radical. On the whole, complexes I–III inhibit the lipid peroxidation in both model (oxidation of unsaturated fatty acids) and in vitro experiments. The inhibiting effects of the complexes are comparable with and even, in some cases, higher than those of the known antioxidant ionol.  相似文献   

4.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

5.
This paper reports two new coordination polymers formed by carboxylate-substituted benzoimidazole and formate ligands: [Mn(L)·(HCO2)]n (1) and [Co(L)·(HCO2)]n (2) (L = benzoimidazol-1-yl-acetate). Com-plexes 1 and 2 are isomorphous and adopt a new 3,6-connected three-nodal topology showing inter-esting magnetic properties: spin canted antiferromagnetism for MnⅡ complex 1, but simple antiferro-magnetic coupling for CoⅡ complex 2.  相似文献   

6.
The cyanidocobaltate of formula fac-PPh4[CoIII(Me2Tp)(CN)3] ⋅ CH3CN ( 1 ) has been used as a metalloligand to prepare polynuclear magnetic complexes (Me2Tp=hydrotris(3,5-dimethylpyrazol-1-yl)borate). The association of 1 with in situ prepared [FeII(bik)2(MeCN)2](OTf)2 (bik=bis(1-methylimidazol-2-yl)ketone) leads to a molecular square of formula {[CoIII{(Me2Tp)}(CN)3]2[FeII(bik)2]2}(OTf)2 ⋅ 4MeCN ⋅ 2H2O ( 2 ), whereas the self-assembly of 1 with preformed cluster [CoII2(OH2)(piv)4(Hpiv)4] in MeCN leads to the two-dimensional network of formula {[CoII2(piv)3]2[CoIII(Me2Tp)(CN)3]2 ⋅ 2CH3CN} ( 3 ). These compounds were structurally characterized via single crystal X-ray analysis and their spectroscopic (FTIR, UV-Vis and 59Co NMR) properties and magnetic behaviours were also investigated. Bulk magnetic susceptibility measurements reveal that 1 is diamagnetic and 3 is paramagnetic throughout the explored temperature range, whereas 2 exhibits sharp spin transition centered at ca. 292 K. Compound 2 also exhibits photomagnetic effects at low temperature, selective light irradiations allowing to promote reversibly and repeatedly low-spin⇔high-spin conversion. Besides, the diamagnetic nature of the Co(III) building block allows us studying these compounds by means of 59Co NMR spectroscopy. Herein, a 59Co chemical shift has been used as a magnetic probe to corroborate experimental magnetic data obtained from bulk magnetic susceptibility measurements. An influence of the magnetic state of the neighbouring atoms is observed on the 59Co NMR signals. Moreover, for the very first time, 59Co NMR technique has been successfully introduced to investigate molecular materials with distinct magnetic properties.  相似文献   

7.
In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII−Cl]+ species results in the formation of [CoII4-L)(OH2)]2+. Further reduction produces [CoI4-L)(OH2)]+, which undergoes a rate-limiting structural rearrangement to [CoI5-L)]+ before being protonated to form [CoIII−H]2+. The rate of [CoIII−H]2+ formation is similar for all complexes in the series. Using E1/2 values of various Co species and pKa values of [CoIII−H]2+ estimated from PR experiments, we found that while the protonation of [CoIII−H]2+ is unfavorable, [CoII−H]+ reacts with protons to produce H2. The catalytic activity for H2 evolution tracks the hydricity of the [CoII−H]+ intermediate.  相似文献   

8.
Reaction of 3,6-di-tert-butyl-1,2-benzoquinone and 3,6-di-tert-butylcatechol withtert-butyl hydroperoxide in aprotic solvents leads to the generation of semiquinone (SQ.H), alkylperoxy (ROO.), and alkyloxy radicals. The reaction of SQ.H and ROO. produces 2,5-di-tert-butyl-6-hydroxy-1,4-benzoquinone, 3,6-di-tert-butyl-1-oxacyclohepta-3,5-diene-2,7-dione, and 2,5-di-tert-butyl-3,6-dihydroxy-1,4-benzoquinone. The radical generated from solvent attacks SQ.H at position 4 with C−C bond formation. 4-Benzyl-2,5-di-tert-butyl-6-hydroxycyclohexa-2,5-diene-1-dione produced in this way is transformed into 4-benzyl-3,6-di-tert-butyl-1,2-benzoquinone under the reaction conditions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 943–946, May, 1999.  相似文献   

9.
Bimetallic oxalate-bridged complexes Q[MIICo(C2O4)3] (Q=Me4N+, Bun 4P+; MII=Mn, Co, Ni, Cu, Zn) were synthesized. Single crystals of [NBun 4][MnIICoIII(C2O4)3] were studied by XRD. Unit cell parametersa=b=9.242(3) Å,c=54.524(13) Å; space groupR3c. Magnetic measurements indicate the absence of a magnetic phase transition up to the temperature of liquid helium. The XRD data confirm the presence of CoIII ions with a low-spin configuration in the crystal.  相似文献   

10.
Two different charge distributions of the complex cation [MnIII(cth)(diox)]+ (cth=a tetraazamacrocycle, diox=3,5-di-tert-butyl-o-benzoquinone; structure shown in the picture) can be isolated by varying the counteranion: [MnIII(cth)(cat)]BPh4 and [MnII(cth)(sq)]ClO4 (cat and sq denote the catecholato and semiquinonato forms of the ligand). The complex undergoes noncooperative entropy-driven valence tautomeric transitions.  相似文献   

11.
It has recently been proposed that disulfide/thiolate interconversion supported by transition‐metal ions is involved in several relevant biological processes. In this context, the present contribution represents a unique investigation of the effect of the coordinated metal (M) on the Mn+?disulfide/M(n+1)+?thiolate switch properties. Like its isostructural CoII‐based parent compound, CoII 2 SS (Angew. Chem. Int. Ed.­ 2014 , 53, 5318), the new dinuclear disulfide‐bridged MnII complex MnII 2 SS can undergo an MII?disulfide/MIII?thiolate interconversion, which leads to the first disulfide/thiolate switch based on Mn. The coordination of iodide to the metal ion stabilizes the oxidized form, as the disulfide is reduced to the thiolate. The reverse process, which involves the reduction of MIII to MII with the concomitant oxidation of the thiolates, requires the release of iodide. The MnII 2 SS complex slowly reacts with Bu4NI in CH2Cl2 to afford the mononuclear MnIII?thiolate complex MnIIII . The process is much slower (ca. 16 h) and much less efficient (ca. 30 % yield) with respect to the instantaneous and quantitative conversion of CoII 2 SS into CoIIII under similar conditions. This distinctive behavior can be rationalized by considering the different electrochemical properties of the involved Co and Mn complexes and the DFT‐calculated driving force of the disulfide/thiolate conversion. For both Mn and Co systems, MII?disulfide/MIII?thiolate interconversion is reversible. However, when the iodide is removed with Ag+, the MII 2 SS complexes are regenerated, albeit much slower for Mn than for Co systems.  相似文献   

12.
Lead(II) catecholate complexes were prepared by reduction of 3,6-di-tert-butyl-o-benzoquinone and its derivatives with lead metal in THF. The molecular structure of the (CatPb)4·(PbO)2·6C3H6O complex (Cat is the dianion of 3,6-di-tert-butylcatechol), which was synthesized by hydrolysis of lead 3,6-di-tert-butylcatecholate in acetone, was established by X-ray diffraction. A series of lead(II) o-semiquinone complexes, which were prepared by the addition of the phenoxyl radical to lead catecholates or by oxidation of the latter with mercury(II), copper(II), or silver(I) halides, were studied by the ESR method. Lead(II) mono-o-semiquinolate complexes undergo symmetrization to form stable bis-o-semiquinolates, which were isolated and characterized in individual state. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1103–1111, July, 2006.  相似文献   

13.
An ESR method for studying the mechanism of H-transfer reactions between H-donors of different reactivity (A1H, A2H…) and their free radicals (A1; A2.…) in non-polar solvents at ambient temperature is presented. The new technique is based on a pulsed initiation of various secondary phenoxy or nitroxy radicals in binary mixtures of hindered phenols, unhindered phenols, partially hindered thiobisphenols and diphenylamine, employing a high concentration of free RO2. and coordinated (CoIII)RO2. tert-butyl peroxy radicals generated in the redox-reaction of Co(acac)2 with tert-butyl hydroperoxide. The consecutive H-transfer reactions proceed to equilibrium until the most stable radicals are formed. In this way criteria are obtained for ranking the compared free and coordinated phenoxy radicals according to their relative stabilities. The secondarily generated phenoxy radicals from unhindered phenols after coordination to CoIII are stabilized and cannot take part in further H-transfer reactions.  相似文献   

14.
Recrystallization of [Co(3,5-dbbq)2(L)2] (3,5-dbbq?=?3,5-di-tert-butyl-1,2-benzoquinone; L?=?bis(3-pyridyl)phenylvinylsilane) from diethyl ether at ?20?°C produces trans-[Co(3,5-dbbq)2(L)2] while the recrystallization from toluene at ?20?°C gives trans-[Co(3,5-dbbq)2(L)2]·2PhMe. The complex exists as trans-[CoIII(3,5-dbsq)(3,5-dbcat)(L)2] (3,5-dbsq?=?3,5-di-tert-butyl-1,2-semiquinonato; 3,5-dbcat?=?3,5-di-tert-butylcatecholato) in the solid state at 173?K. Differences in charge distribution between trans-[Co(3,5-dbbq)2(L)2] and trans-[Co(3,5-dbbq)2(L)2]·2PhMe have been observed based on the effective magnetic moments and IR spectra of the complexes along with their X-ray crystal structures.  相似文献   

15.
Simultaneous incorporation of both CoII and CoIII ions within a new thioether S‐bearing phenol‐based ligand system, H3L (2,6‐bis‐[{2‐(2‐hydroxyethylthio)ethylimino}methyl]‐4‐methylphenol) formed [Co5] aggregates [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CCH3)2](ClO4)4?H2O ( 1 ) and [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CC2H5)2](ClO4)4?H2O ( 2 ). The magnetic studies revealed axial zero‐field splitting (ZFS) parameter, D/hc=?23.6 and ?24.3 cm?1, and E/D=0.03 and 0.00, respectively for 1 and 2 . Dynamic magnetic data confirmed the complexes as SIMs with Ueff/kB=30 K ( 1 ) and 33 K ( 2 ), and τ0=9.1×10?8 s ( 1 ), and 4.3×10?8 s ( 2 ). The larger atomic radius of S compared to N gave rise to less variation in the distortion of tetrahedral geometry around central CoII centers, thus affecting the D and Ueff/kB values. Theoretical studies also support the experimental findings and reveal the origin of the anisotropy parameters. In solutions, both 1 and 2 which produce {CoIII2(μ‐L)} units, display solvent‐dependent catechol oxidation behavior toward 3,5‐di‐tert‐butylcatechol in air. The presence of an adjacent CoIII ion tends to assist the electron transfer from the substrate to the metal ion center, enhancing the catalytic oxidation rate.  相似文献   

16.
Interfacial electron transfer induced by 254 nm light at nanomaterial (nm) titanium dioxide/CoIII(N–N)3 3+ interface in binary mixed solvent media such as water/methanol (or 1,4-dioxane) has been probed. The distinct photo reduction of cobalt(III) complexes, CoIII(N–N)3 3+; (N–N)=(NH3)2, en (1,2-diamino ethane), pn (1,2-diamino propane), tn (1,3-diamino propane), and bn (1,4-diamino butane), by excited nm-TiO2 particles: CoIII + nm-TiO2 + hν → TiO2 (h+;e) + CoIII → nm-TiO2 (h) + CoII is solvent controlled. The electron transfer from the conduction band of TiO2 (e, CB) onto the metal centre of the complex consists of (i) electron transport from CB into surface-adsorbed species A: CoIII(N–N)3 3+ (ii) solution phase species B: CoIII(N–N)3 3+ (sol.), accumulated at the surface of the nanoparticle. In addition, UV irradiation of CoIII(N–N)3 3+ stimulates generation of \textCo\textaq\textII {\text{Co}}_{\text{aq}}^{\text{II}} ion, due to charge transfer transition, in solution phase. After UV irradiation, cobalt-implanted nm-TiO2 separated as gray ultrafine particles, which were isolated. Photo efficiency of the formation of CoII ion was estimated and the cobalt implanted nanomaterial crystals isolated from the photolyte solutions were subjected to SEM-EDX, X-ray mapping, and HRTEM-SAED analyses. Solvent medium was found to contribute in both the formation of CoII ion and interstitial insertion of cobalt into the lattice of nm-TiO2.  相似文献   

17.
A known trinuclear structure was used to design the heterobimetallic mixed-valent, mixed-ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] ( 1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] ( 2 ) and [NiII(hfac)3−Na−CoIII(acac)3] ( 3 ) via isovalent site-specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple-wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of 2 and 3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform 1 exhibits flexibility in accommodating a variety of di- and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4 functional oxide materials.  相似文献   

18.
Mononuclear monodioxolene valence tautomeric (VT) cobalt complexes typically exist in their low spin (l.s.) CoIII(cat2−) and high spin (h.s.) CoII(sq⋅) forms (cat2−=catecholato, and sq⋅=seminquinonato forms of 3,5−di−tBu-1,2-dioxolene), which reversibly interconvert via temperature-dependent intramolecular electron transfer. Typically, the remaining four coordination sites on cobalt are supported by a tetradentate ligand whose properties influence the temperature at which VT occurs. We report that replacing one chelating pyridyl arm of tris(2-pyridylmethyl)amine (tpa) with a weaker field ortho-anisole moiety facilitates access to a third magnetic state, and examine a series of related complexes. Variable temperature crystallographic, magnetic, calorimetric, and spectroscopic studies support that this third state is consistent with l.s. CoII(sq⋅). Thus, our ligand modifications not only provide access to the VT transition from l.s. CoIII(cat2−) to l.s. CoII(sq⋅), but at higher temperatures, the complex undergoes spin crossover from l.s. CoII(sq⋅) to h.s. CoII(sq⋅), representing the first example of two-step magnetic switching in a mononuclear monodioxolene cobalt complex. We hypothesize that ligand dynamicity may facilitate access to the rarely observed l.s. CoII(sq⋅) intermediate state, suggesting a new design criterion in the development of stimulus-responsive multi-state molecular switches.  相似文献   

19.
The X-ray K-absorption edge of cobalt in some cobalt (II) and cobalt (III) complexes has been investigated using a 400 mm bent crystal spectrometer. The structure associated with the absorption edge has been used to deduce information regarding the bond lengths, the mode of bonding and the coordination of cobalt in complexes. On the basis of the results obtained, it has been concluded that Co ions are surrounded by distorted octahedra in CoII(Saltn)(H2O)2, CoIII(acac)(Saltn) whereas Co ions in CoII(Salbn) have a tetrahedral structure and Co ions in CoII(SalHn) have pseudotetrahedral structure. All the compounds exhibit slight ionic character.  相似文献   

20.
Herein reported is an example of one-dimensional coordination polymer [CoII(3,5-DBsq)2(dpg)]·(3,5-H2DBcat)2 (1) (3,5-DBsq = 3,5-di-tert-butylsemiquinonate, 3,5-H2DBcat = 3,5-di-tert-butyl-benzene-1,2-diol, dpg = meso-alpha,beta-di(4-pyridyl)glycol) capable of undergoing thermal and photoinduced valence tautomeric transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号