首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axial chirality is an interesting stereoisomeric phenomenon in organic chemistry and a key structural feature of several organic compounds. Atropisomers such as biaryls, anilides and diaryl ethers are one type of axially chiral compounds, whose axial chirality is resulted from rotationally blocked single bond. Allenes, spiranes and alkylidenecycloalkanes are another type of axially chiral compounds and their axial chirality come from the perpendicular geometry of two pairs of substituents. The axial chirality in atropisomers, allenes and spiranes has been widely investigated and well developed, while the similar chirality in alkylidene-cyclic molecules gained very limited attentions. This concept focuses on summarizing recent advances of axial chirality in alkylidene-cyclic molecules and arouses the research interests to this promising field.  相似文献   

2.
Central‐to‐axial chirality conversion represents a fascinating class of chemical processes consisting of the destruction of stereogenic centers and the simultaneous installation of axial chiral elements, which provides efficient methods for the preparation of axially chiral compounds. Using the strategy, a wide range of axially chiral compounds, including biaryls, heterobiaryls, aromatic amides, allenes and vinyl arenes, have been synthesized with high efficiency and excellent enantioselectivity. In addition, central‐to‐axial chirality conversion strategy has been applied to the synthesis of natural products. The strategy has undoubtedly become and will continue to be a hot research topic in the field of asymmetric catalysis and synthesis. In this minireview, we selected some examples to introduce the developments and trends in the central‐to‐axial chirality conversion strategy up to April 2020.  相似文献   

3.
Over the last few years, gold‐catalyzed reactions that involved chirality transfer and memory of chirality (MOC) have emerged as a powerful tool in enantioselective synthesis. This technique has allowed for the single‐step synthesis of enantioenriched compounds from readily available starting materials. This Focus Review discusses this emerging field with an emphasis on mechanistic aspects and their applications in synthetic organic chemistry.  相似文献   

4.
The diastereomeric hemicryptophane oxidovanadium(V) complexes (P)‐(S,S,S)‐ 3 and (M)‐(S,S,S)‐ 4 have been synthesized. 1H and 51V NMR spectra in solution are consistent with the formation of Λ and Δ forms of the propeller‐like vanatrane moiety, leading to two diastereomeric conformers for each complex: that is, (P)‐(S,S,S‐Λ)‐ 3 /(P)‐(S,S,S‐Δ)‐ 3 and (M)‐(S,S,S‐Λ)‐ 4 /(M)‐(S,S,S‐Δ)‐ 4 . The Λ/Δ ratio is rather temperature‐insensitive but strongly dependent on the solvent (the de of (M)‐(S,S,S)‐ 4 changes from 0 in benzene to 92 % in DMSO). The solvent therefore controls the preferential clockwise or anticlockwise orientation of the propeller‐like atrane unit. The energy barriers for the Λ?Δ equilibrium were determined by NMR experiments, and the highest ΔG value (103.7 kJ mol?1) was obtained for (P)‐(S,S,S)‐ 3 , much higher than those reported for other atrane derivatives. This is attributed to the constraints arising from the cage structure. Determination of the activation parameters provides evidence for a concerted, rather than a stepwise, interconversion mechanism with entropies (ΔS) of ?243 and ?272 J mol?1 K?1 for (P)‐(S,S,S)‐ 3 and (M)‐(S,S,S)‐ 4 , respectively. The molecular structure of the (P)‐(S,S,S‐Λ)‐ 3 isomer was solved by X‐ray diffraction and shows a distorted structure with one of the linkers located in the CTV cavity. Complementary quantum chemical calculations were carried out to obtain the energy‐minimized structures of (P)‐(S,S,S)‐ 3 and (M)‐(S,S,S)‐ 4 . Our density functional theory calculations suggest that the (P)‐(S,S,S‐Λ)‐ 3 is favored, in agreement with experimental data. For the M series, a similar strategy was used to extract molecular structures and relative energies. As in the case of the P diastereomer, the Λ form dominates over the Δ one.  相似文献   

5.
Optically active chiral alkyl chlorides are valuable compounds because of their bioactivity and versatile synthetic utility. Accordingly, the ring opening of epoxides with a chloride nucleophile stands as an important goal in asymmetric catalysis. We describe herein recent advances in the design and development of chiral pyridine N‐oxide catalysts for the enantioselective synthesis of chlorohydrins.  相似文献   

6.
王强  顾庆  游书力 《化学学报》2019,77(8):690-704
在手性分子中,轴手性化合物占据着非常重要的地位.从原子和步骤经济性方面考虑,利用不对称碳-氢官能团化反应构建轴手性化合物是最简洁高效的方法.随着过渡金属催化的不对称碳-氢键官能团化领域的逐步发展,利用该策略来构建轴手性联芳基化合物的研究成果也不断涌现.本文综述了通过过渡金属钯、铑和铱催化的不对称碳-氢键官能团化反应合成轴手性联芳基化合物的最新进展.此外,还介绍了利用这些方法合成多种轴手性配体及其催化的不对称反应,以及这些方法在天然产物合成中的应用.  相似文献   

7.
The conical intersections corresponding to the C─O and C─C ring opening were optimized and the reaction paths traversing these intersections were obtained. Investigation of the C─O ring opening revealed that when traversing the lowest energy conical intersection, the reaction path returns to the closed ring geometry. The C─O path traversing the intersection featuring torsion of terminal CH2 group however, led to a ring-opened geometry, an H-shift and the formation of acetaldehyde that can undergo further dissociation. The observation of different reaction paths was explained by the 3-D paths from quantum theory of atoms in molecules (QTAIM) that defined the most preferred direction of electronic motion that precisely tracked the mechanisms of bond breaking and formation throughout the photo-reactions. The size, orientation, and location of these most preferred 3-D paths indicated the extent and direction of motion of atoms, bonds, and the degree of torsion or planarity of a bond indicating a predictive ability.  相似文献   

8.
Recently, academic chemists have renewed their interest in the development of 1,1′‐binaphthalene‐2,2′‐diol (BINOL)‐derived chiral ligands. Six years ago, a working hypothesis, that the chirality matching of hybrid chirality on a ligand could probably lead to high levels of stereoselective induction, prompted us to use the axial chirality of BINOL derivatives to generate new stereogenic centers within the same molecule with high stereoselectivity, obtaining as a result sterically favorable ligands for applications in asymmetric catalysis. This Personal Account describes our laboratory's efforts toward the development of a novel class of BINOL‐derived atropisomers bearing both axial and sp3 central chirality, the so‐called Ar‐BINMOLs, for asymmetric synthesis. Furthermore, on the basis of the successful application of Ar‐BINMOLs and their derivatives in asymmetric catalysis, the search for highly efficient and enantioselective processes also compelled us to give special attention to the BINOL‐derived multifunctional ligands with multiple stereogenic centers for use in catalytic asymmetric reactions.

  相似文献   


9.
10.
Enantioselective construction of axially chiral biaryls by direct C? H bond functionalization reactions has been realized. Novel axially chiral biaryls were synthesized by the direct C? H bond olefination of biaryl compounds, using a chiral [Cp*RhIII] catalyst, in good to excellent yields and enantioselectivities. The obtained axially chiral biaryls were found as suitable ligands for rhodium‐catalyzed asymmetric conjugate additions.  相似文献   

11.
The newly developed oligophenylenevinylene (OPV)‐based fluorescent (FL) chiral chemosensor (OPV‐Me) for the representative enantiomeric guest, 1,2‐cyclohexanedicarboxylic acid (1,2‐CHDA: RR ‐ and SS ‐form) showed the high chiral discrimination ability, resulting in the different aggregation modes of OPV‐Me self‐assembly: RR ‐CHDA directed the fibrous supramolecular aggregate, whereas SS ‐CHDA directed the finite aggregate. The consequent FL intensity toward RR ‐CHDA was up to 30 times larger than that toward SS ‐CHDA. Accordingly, highly enantioselective recognition was achieved. Application to the chirality sensing was also possible: OPV‐Me exhibited a linear relationship between the FL intensity and the enantiomeric excess through the morphological development of stereocomplex aggregates. These results clearly show that the chiral recognition ability is manifested by the amplification cascade of the chirality difference through self‐assembly.  相似文献   

12.
The model of limited enantioselectivity (LES) in closed systems, and under experimental conditions able to achieve chemical equilibrium, can give rise to neither spontaneous mirror symmetry breaking (SMSB) nor kinetic chiral amplifications. However, it has been recently shown that it is able to lead to SMSB, as a stationary final state, in thermodynamic scenarios involving nonuniform temperature distributions and for compartmentalized separation between the two autocatalytic reactions. Herein, it is demonstrated how SMSB may occur in LES in a cyclic network with uniform temperature distribution if the reverse reaction of the nonenantioselective autocatalysis, which gives limited inhibition on the racemic mixture, is driven by an external reagent, that is, in conditions that keep the system out of chemical equilibrium. The exact stability analysis of the racemic and chiral final outcomes and the study of the reaction parameters leading to SMSB are resolved analytically. Numerical simulations, using chemical kinetics equations, show that SMSB may occur for chemically reasonable parameters. Numerical simulations on SMSB are also presented for speculative, but reasonable, scenarios implying reactions common in amino acid chemistry.  相似文献   

13.
14.
15.
16.
Counterion‐induced stereocontrol is a powerful tool in organic synthesis. However, such enantiocontrol on tetrahedral ammonium cations remains challenging. Described here is the first example of using chiral anion phase‐transfer catalysis to achieve intermolecular ring‐opening of azetidiniums with excellent enantioselectivity (up to 97 % ee). Precise control over the formation and reaction of the chiral ion pair as well as inhibition of the background reaction by the biphasic system is key to the success of the reaction.  相似文献   

17.
The spinning cone is a model of rotating molecules used by Barron in 1986 in relation to asymmetric synthesis and to parity violation. He considered that the non-translating cone spinning about its symmetry axis has false chirality (i.e., it is not chiral), whereas Mislow concluded in 1999 that it is indeed chiral and severely criticized the true versus false chirality nomenclature introduced by Barron, who still disagreed in 2013 with the conclusion of Mislow. Here, it is shown that this controversy comes from an ambiguity in the spinning cone model and that in fact both authors were right. Light is thrown on the true chirality versus false chirality controversy with a very recently published result, which was thus unavailable to both authors: this is a new definition of chirality that encompasses the one introduced by Lord Kelvin at the end of the 19th century.  相似文献   

18.
The enantioselective construction of all‐carbon quaternary stereocenters is one of the most challenging fields in asymmetric synthesis. An asymmetric desymmetrization strategy offers an indirect and efficient method for the formation of all‐carbon stereocenters. An enantioselective formation of cyano‐bearing all‐carbon quaternary stereocenters in 1,2,3,4,‐tetrahydroquinolines and 2,3,4,5‐tetrahydro‐1H‐benzo[b]azepines by copper‐catalyzed desymmetric N‐arylation is demonstrated. The cyano group at the prochiral center plays a key role for the high enantioselectivity and works as an important functional group for further transformations. DFT studies provide a model which successfully accounts for the origin of enantioselectivity.  相似文献   

19.
A multiscale computational study was performed with the aim of tracing the source of stereoselectivity and disclosing the role of water in the stereoselective step of propionaldehyde aldol self‐condensation catalyzed by proline amide in water, a reaction that serves as a model for aqueous organocatalytic aldol condensations. Solvent mixing and hydration behavior were assessed by classical molecular dynamics simulations, which show that the reaction between propanal and the corresponding enamine takes place in a fully hydrated environment. First‐principles molecular dynamics simulations were used to study the free‐energy profile of four possible reaction paths, each of which yields a different stereoisomer, and high‐level static first‐principles calculations were employed to characterize the transition states for microsolvated species. The first solvation shell of the oxygen atom of the electrophilic aldehyde at the transition states contains two water molecules, each of which donates one hydrogen bond to the nascent alkoxide and thereby largely stabilizes its excess electron density. The stereoselectivity originates in an extra hydrogen bond donated by the amido group of proline amide in two reaction paths.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号