首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The reaction of [Os3(CO)10(μ-dppm)] (1) with tBu2PH in refluxing diglyme results in the electron-deficient metal cluster complex [Os3(CO)5(μ3-H)(μ-PtBu2)2(μ-dppm)] (2) (dppm = Ph2PCH2PPh2) in good yields. The molecular structure of 2 has been established by a single crystal X-ray structure analysis. In contrast to the known homologue [Ru3(μ-CO)(CO)4(μ3-H)(μ-H)(μ-PtBu2)2(μ-dppm)] (3), no bridging carbonyl ligand was found in 2. The electronically unsaturated cluster 2 does not react with carbon monoxide under elevated pressure, therefore 2 seems to be coordinatively saturated by reason of the high steric demands of the phosphido ligands.  相似文献   

2.
The 33-year-old cluster [FeCp(μ3-CO)]4 (1) has been functionalized by reaction with lithium diisopropylamide, followed by CO2, to give the acid RCO2H, 2 (R=Fe43–CO)4Cp3(C5H4–)), recently reported by Rauchfuss. The cluster 2 reacts with (CO)2Cl2 to give the new cluster RCOCl (3), which reacts with the disulfide {S(CH2)11NH3+Cl}2 to give the amido-cluster disulfide [Fe43–CO)4Cp35′-C5H4C(O)NH(CH2)11S}]2 (4), with NEt3 to give the diethylamido cluster [Fe4Cp35-C5H4CONEt2)(μ3-CO)4] (5), and with N-hydroxysuccinimide to give the N-succinimidyl ester cluster 6. © 2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SAScluster functionalization / tetrairon-cylopentadienyl-carbonyl cluster  相似文献   

3.
The oxidative addition reaction of 2,6-bis(bromomethyl)pyridine to Ru3(CO)12 gave scarcely soluble {Ru2Br2(-Q)(CO)4} n , 1, [Q=C5H3N-2-C(O)CH2-6-CH2] or a mixture of 1 and the mononuclear complex RuBr(Q)(CO)3, 2, [Q=C5H3N-2-C(O)CH2-6-CH2Br] according to the reactant's mole ratio. Further reactions of 1 with some N- and P-donor ligands (L) afforded readily soluble dinuclear complexes, Ru2(-Br)(-Q)Br(CO) n (L) m [n=4, m=1, L=PPh3 3a, or py 3b; n=3, m=2, L=PPh3 5a, or PPh2(o-tolyl) 5b]. In this paper, the characterization of these products by the elemental analyses and the spectroscopic methods are described. The X-ray crystal structures of Ru2(-Br) (-Q)Br(CO)4(PPh3)(MeOH), 4, which was obtained by crystallization of 3a from MeOH, and of 5a · (2CHCl 3 ) are also described. Each of the metal atoms in 4 has a distorted octahedral coordination, while in 5a · (2CHCl 3 ) one metal atom takes a distorted octahedral geometry and the other pseudooctahedral, which is completed by presenting a Ru ··· Br secondary bonding interaction.  相似文献   

4.
In recent years the chemistry of mono- or hetero-binuclear complexes containing metal-S(C) bonding modes is a very active field of research. Many useful applications of this kind of complexes have been exploited, such as industrial catalytic hydrodesulfurization (HDS)1,2 and transition metals mediated organic synthesis3-5. In this paper we report that the reduction and subsequent protonation of hetero-binuclear complex [MnRe(CO)6(-S2CPPri3)] occur with cleavage of metal-metal bond and o…  相似文献   

5.
Tri-2-disulfido-3-thiotris(diethyldithiocarbamato)-S,S'-triangle-trimolybdenum bromide [Mo3(3-S)(2-S2)3(Et2NCS2)3 +Br- was obtained and characterized.  相似文献   

6.
Treatment of [Et(4)N][Tp*W(μ(3)-S)(3)(CuBr)(3)] (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate) (1) with an excess of α-methylpyridine (α-MePy) and NH(4)PF(6) in CH(2)Cl(2) afforded a cationic cluster [Tp*W(μ(3)-S)(3)Cu(3)(α-MePy)(3)(μ(3)-Br)](PF(6)) (2) while the reaction of 1 with an excess of 1,4-pyrazine (1,4-pyz) and NH(4)PF(6) in MeCN-CH(2)Cl(2) at 65 °C produced a polymeric cluster [Tp*W(μ(3)-S)(3)Cu(3)(1,4-pyz)((1,4-pyz)(0.5))(2)(μ(3)-Br)][Tp*W(μ(3)-S)(3)(CuBr)(3)] (3). Reactions of 1 with melamine (MA) in 1:1 or 1:2 gave rise to another polymeric cluster [{Tp*W(μ(3)-S)(3)Cu(3)Br(μ(3)-Br)}(2)(MA)(2)] (4) and a neutral cluster [Tp*W(μ(3)-S)(3)Cu(3)Br(μ(3)-Br)(MA)(2)] (5), respectively. Compounds 2-5 were characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H NMR, electrospray ionization (ESI) mass spectra and X-ray crystallography. The cation of 2 has a cubane-like [Tp*W(μ(3)-S)(3)Cu(3)(μ(3)-Br)] structure with each α-MePy ligand coordinated at one Cu(i) center. For 3, each [Tp*W(μ(3)-S)(3)Cu(3)(μ(3)-Br)] core is interconnected by 1,4-pyz bridges to form a 1D cationic zigzag chain with the [Tp*W(μ(3)-S)(3)(CuBr)(3)](-) anions arranged along its two sides. For 4, each [Tp*W(μ(3)-S)(3)Cu(3)(μ(3)-Br)] core is interlinked by MA bridges to afford a 1D spiral chain. 5 adopts a cubane-like [Tp*W(μ(3)-S)(3)Cu(3)(μ(3)-Br)] structure in which one terminal Br and two MA ligands are coordinated at three Cu centers. The third-order nonlinear optical (NLO) properties of 1-5 in DMF were investigated by femtosecond degenerate four-wave mixing (DFWM) technique with a 80 fs pulse width at 800 nm. Compounds 1-5 exhibit good NLO responses, and 3 and 4 possess the largest second-order hyperpolarizability γ values among the known W/Cu/S clusters bearing the [Tp*WS(3)] unit.  相似文献   

7.
Ta(NMe(2))(4)[N(SiMe(3))(2)] (1) undergoes the elimination of Me(3)Si-NMe(2) (2), converting the -N(SiMe(3))(2) ligand to the ═NSiMe(3) ligand, to give the imide "Ta(NMe(2))(3)(═NSiMe(3))" (3) observed as its dimer 4. CyN═C═NCy captures 3 to yield guanidinates Ta(NMe(2))(3-n)(═NSiMe(3))[CyNC(NMe(2))NCy](n) [n = 1 (5), 2 (6)]. The kinetic study of α-SiMe(3) abstraction in 1 gives ΔH(?) = 21.3(1.0) kcal/mol and ΔS(?) = -17(2) eu.  相似文献   

8.
A new coordination compound [Co(Pht)(2-MeIm)2] (I), where Pht2–is the deprotonated radical of o-phthalic acid (H2Pht) and 2-MeIm is 2-methylimidazole, was synthesized. Its structure was established using X-ray diffraction analysis. The crystal is orthorhombic: space group Pca21, a= 15.350(3), b= 7.957(2), c= 13.997(3) Å, (calcd.) = 1.505 g/cm3, and Z= 4. The tetrahedral coordination of the Co(II) atom includes two N atoms of two 2-methylimidazole molecules and two oxygen atoms of two carboxyl groups from different acid radicals. The Co–N distances are equal to 2.022(2) and 2.031(2) Å, while the Co–O distances are 1.972(2) and 2.000(2) Å. The carboxyl groups of the Pht2–radical and the aromatic nucleus form angles of 47.2° and 35.9°, whereas the angle formed by the carboxyl groups themselves is 50.3°. Compound Iis a polymer, which is confirmed by the 1,6-bridging function of the o-phthalic acid radical. The Co···Co distance in a chain is equal to 7.367 Å. Separate chains are united in the crystal into a framework via N–H···O hydrogen bonds.  相似文献   

9.
The reaction of pyridine-2,5-dicarboxylic acid with Sc2O3 under hydrothermal con-dition yields a new complex [Sc(μ-OH)(2,5-pydc)(H2P)]n 1 which has a chain structure based on homodinuclear scandium units. Crystal data for 1: space group P1, a = 6.7192(13), b = 7.6131(13),c= 8.9313(14) A, α = 95.976(6), β = 101.663(6),γ,= 108.151(5)°, V = 418.26(13) A3, Z = 2, Dc =1.946 g/cm3,μ = 0.889 mm-1, F(000) = 248, C7H6NO6Sc, M, = 245.09, the final R = 0.0429 and wR = 0.1086.  相似文献   

10.
Thermodynamic and mechanistic features of the chalcogen exchange reaction between [RGa( 3-Te)]4 and elemental sulfur or selenium have been studied employing density functional theory (DFT) calculations using the BL3YP basis set and Stuttgart pseudopotentials. For [MeGa( 3-E)]4 (E=S, Se, Te) the correlation between the calculated parameters and diffraction data for their isolable analogs is greater than 98%. Each step of the conversion of [MeGa( 3-Te)]4 to [MeGa( 3-E)]4 via [Me4Ga4( 3-Te)4–x ( 3-E) x ] (E=S, Se) is predicted to occur as a series of isolated reactions. The entropy change for each chalcogen exchange is small in magnitude and corresponds to the degree of cage distortion within the cubane molecules. Calculations performed on [MeGa( 3-Te)]4...S8 and [MeGa( 3-Te)]4-S suggest that an increase in electrophilicity of the gallium next to a surface bound tellurium may result in nucleophilic cage opening for which intermediate structures are calculated.  相似文献   

11.
The reaction of the tetranuclear cluster Pd4(CO)4(OOCCF3)4 witho-nitrosotoluene afforded the Pd11-containing complex [o-(NO)(CH2)C6H4]2Pd2(μ-OOCCF3)2. The elimination of CO2 and the formation of organic products of transformation of tolylnitrene species (azotoluene, ditolylamine, and tolylisocyanate) were observed in the course of the reaction. The title complex was characterized by IR and1H NMR spectroscopy. Its structure was established by X-ray diffraction analysis. It was suggested that the reaction proceeds through intermediate formation of nitrene complexes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 147–150, January, 2000.  相似文献   

12.

In absolute ethanol and in the presence of triethylorthoformate, reactions of metal(II) nitrates with linear tridentate amines afforded metal complexes of the formula M(NNN)(NO3)2, where M = Ni2+, Cu2+ and Zn2+, and NNN = dien and Medpt. The compounds fall into three categories in accordance with their stereochemistry and mode of binding of the nitrato ligands. Compounds I, [Ni(dien)(O2NO)(ONO2)] and III, [Zn(dien)(O2NO)(ONO2)] are isomorphous and isostructural. They crystallize in the monoclinic space group P21/n with nearly identical cell constants. The stereochemistry of these two compounds is such that the terdentate dien ligand forms a fac MN3 moiety with the two oxygens of the bidentate nitrato ligand trans to the terminal NH2. These ligands form the base of the octahedral arrangement in which the sixth position, trans to the secondary nitrogen of the dien, is an oxygen of the monodentate nitrato ligand. Compound IV, [Ni(Medpt)(O2NO)(ONO2)] falls into the same category as I and III despite the fact that the two rings in the Ni-Medpt moiety are six-membered rings, unlike those in compounds I and III which are five-membered rings. Nevertheless, the nickel-amine arrangement is fac. The bidentate nitrato-oxygens are trans to the terminal NH2 of the amine ligand, and the oxygen of the monodentate nitrato ligand is trans to the tertiary amine-nitrogen. Such stereochemistry is prevalent for nickel and zinc compounds. Interestingly, compound IV crystallizes as a conglomerate (space group P212121). Compound II, {[Cu(dien)(μ-ONO2)]NO3} belongs to the second category and has a polymeric structure. The repeating fragment in the polymeric chain is a Cu(dien)-O fragment with the monodentate nitrato ligand occupying an equatorial position of the base. A second oxygen of the equatorial nitrate becomes an axial ligand for an adjacent Cu-N3O fragment. In this way the substance propagates into an infinite chain. The repeating unit has an effective square pyramidal, five-coordinate, configuration. Finally, the compound crystallizes as a racemate. The second nitrate necessary for charge compensation of this copper(II) compound is ionic and its function is to hold the infinite chains of the lattice. The third category represented by compound V, [Cu(Medpt)(ONO2)2] contains two molecules in the asymmetric unit of the racemic lattice (monoclinic, space group P21/a). The structure of Cu-Medpt is unlike that of IV in that both species present in the asymmetric unit have the amine ligand in a mer configuration which together with a monodentate oxygen of a nitrato ligand form a base plane of a square pyramid. The fifth ligand of both Cu2+ ions is a second monodentate nitrato ligand. The stereochemical differences between the two Cu2+ ions are insignificant for the Cu-Medpt fragment, which share the same conformation and configuration. The major difference between the two species is the torsional angles defined by the Cu-O-N-O angles. The difference arises from variation in the hydrogens of the primary amine moieties selected by nitrato-oxygens to form intramolecular hydrogen bonds. Finally, there is a little variation in the equatorial Cu-ONO2 stereochemistry because of steric hindrance, imposed by the Medpt, preventing large torsional angles by these nitrato ligands. This is evident by comparing the two copper species shown in Finally, nitrate-to-Br ligand exchange was found to take place when KBr pellets are prepared for IR spectral measurements.  相似文献   

13.
The synthesis and molecular structures of tris(pentamethylphenyl)aluminum, (C6Me5)3Al, (I), and the magnesium cluster [Mg6( 3-OH)2( 3-Br)2( 2-Br)8(OEt2)8] (II), are reported. Both compounds were isolated from the same system. The aluminum atom in (I) resides in an almost idealized trigonal planar environment. The dihedral angles of the pentamethylphenyl rings relative to the AlC3plane in (I) are 67.2, 62.4, and 61.2°. The neutral magnesium cluster, (II), is interesting in that contains six magnesium atoms each of which resides in octahedral environments.  相似文献   

14.
A novel Mg6 cluster molecule with the formula of Mg6( 3-OH)2( 3-Br)2(-Br)8(THF)8 (1) has been isolated in 38% yield from a reaction of the Grignard reagent, 2-naphthyl-Mg-Br with BBr3 in THF. The structure of 1, determined by a single-crystal X-ray diffraction analysis, contains two Mg3 triangles linked together by two bridging bromide ligands. Within each Mg3 triangle, one hydroxide and one bromide ligand function as triply bridging ligands capping both sides of the Mg3 triangle. The coordination geometry around each Mg(II) ion is approximately octahedral. NMR studies revealed that compound 1 is highly fluxional in solution.  相似文献   

15.
The redox properties of the clusters Ru3(CO)12(1), Ru3(μ-H)(μ3122-C2Fe)(CO)9 (2), OS3(μ-H)(μ3122-C2Fe)(CO)9 (3), Ru4(μ-H)(μ41112-C2Fe)(CO)12 (4), and RuOS3(μ-H)(μ41112-C2Fe)(CO)12 (5) in THF have been studied by cyclic voltammetry in the temperature range from ?60 to +20°C. It was demonstrated that reversible one-electron oxidation of the ferrocenyl fragment in clusters 2–5 occurs at more positive potentials (δE 0=0.15–0.26 V) than that of free ferrocene. This is indicative of the electron-withdrawing character of the cluster core with respect to the ferrocenylacetylide ligand. The electron-withdrawing effect of the metal core is more pronounced in tetranuclear clusters4 and 5 than in trinuclear clusters2 and3. Unlike complexes13, which undergo irreversible reduction, complexes4 and5 undergo reversible one-electron reduction to form the corresponding radical anions4 ? and5 ?.  相似文献   

16.
Zhao J  Liang J  Chen J  Pan Y  Zhang Y  Jia D 《Inorganic chemistry》2011,50(6):2288-2293
Novel cobalt polyselenidoarsenate [Co(phen)(3)][As(2)Se(2)(μ-Se(3))(μ-Se(5))] (1; phen = 1,10-phenanthroline) was methanolothermally synthesized by the reaction of CoCl(2), As(2)O(3), and Se templated by phen in a CH(3)OH solvent at 130 °C. The same reaction in a H(2)O solvent yielded cobalt selenidoarsenate [Co(phen)(3)](2)[As(8)Se(14)] (2). In 1, the AsSe(+) units are alternately joined by the μ-Se(3)(2-) and μ-Se(5)(2-) bridging ligands to form a novel helical polyselenidoarsenate chain [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞). In 2, eight pyramidal AsSe(3) units are connected via corner sharing into the new member of the selenidoarsenate aggregate [As(8)Se(14)](4-) with a condensation grade of 0.571, which represents the first discrete selenidoarsenate(III) with a condensation grade of above 0.50. The octahedral complex [Co(phen)(3)](2+) is formed in situ to act as a countercation in compounds 1 and 2. 1 and 2 exhibit steep absorption band gaps at 2.09 and 2.16 eV, respectively.  相似文献   

17.
A new cadmium polymer [Cd(NBA)(μ3-OH)(4,4′-bipy)1/2]n 1 (NBA = m-nitrobenzoic acid and 4,4′-bipy = 4,4-bipyridine) has been synthesized by hydrothermal reaction. Its structure was determined by single-crystal X-ray diffraction method, and characterized by elemental analysis and IR spectrum. The crystal is of monoclinic, space group C2/c, with a = 15.6912(9), b = 25.9394(15), c = 6.7332(4) ′, β = 114.7700(10)°, V = 2488.4(3) 3, C12H9CdN2O5, Mr = 373.61, Z = 8, Dc = 1.995 g/cm3, μ = 1.776 mm-1, F(000) = 1464, R = 0.0411 and wR = 0.1128 for 2130 observed reflections (I > 2σ(I)). X-ray diffraction studies reveal that the compound features a layered structure, in which 4,4′-bipy ligands bridge Z type of double chains [Cd(μ3-OH)]n and NBA ligands locate at the two sides of the layer. The π-π interactions between the benzene rings of NBA ligands of two adjacent layers lead to the 3D framework.  相似文献   

18.
Addition of aqueous HCl to Ru5( 3-C=CH2)(-SMe)2(-PPh2)2(CO)10 afforded the structurally characterized carbyne complex Ru5( 3-SMe)( 3-CMe)(-Cl)(-SMe)(-PPh2)2(CO)9, formed by addition of H to the vinylidene ligand; a Cl atom bridges an Ru–Ru bond.  相似文献   

19.
[Co3(CO)93-CX)] (X  H, Cl) react with S2CPR3 (R  cyclohexyl, Cy or isopropyl, iPr) in CH2 Cl2 to give heptacarbonyltricobalt clusters [CO3(CO)73-CX)(μ2-S2CPR3)] in which the S2CPR3 act as four-electron ligands, bridging a CoCo cluster edge in a σ(S), σ(S′) fashion, as shown by an X-ray determination on a crystal of the derivative with X  H, R  Cy. The five-membered CoSCSCo ring is nearly perpendicular to the CO3 triangle (i.e. axial), in contrast to the equatorial disposition usually found in related complexes with phosphorus ligands.  相似文献   

20.
The anion, [(2-H)Os3(CO)10(2-CO)], reacts with the donor ligand EPh3 (E=P or As) to produce, as an intermediate in the reaction to the substituted anion [(2-H)Os3(CO)9(2-CO)(EPh3)], a moderately stable formyl derivative which we tentatively formulate as [Os3(CO)9(2-CHO)(EPh3)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号