首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chiral binuclear gold(I) phosphine complexes catalyze enantioselective intermolecular hydroarylation of allenes with indoles in high product yields (up to 90 %) and with moderate enantioselectivities (up to 63 % ee). Among the gold(I) complexes examined, better ee values were obtained with binuclear gold(I) complexes, which displayed intramolecular AuI AuI interactions. The binuclear gold(I) complex 4c [(AuCl)2( L3 )] with chiral biaryl phosphine ligand (S)‐(−)‐MeO‐biphep ( L3 ) is the most efficient catalyst and gives the best ee value of up to 63 %. Substituents on the allene reactants have a slight effect on the enantioselectivity of the reaction. Electron‐withdrawing groups on the indole substrates decrease the enantioselectivity of the reaction. The relative reaction rates of the hydroarylation of 4‐X‐substituted 1,3‐diarylallenes with N‐methylindole in the presence of catalyst 4c [(AuCl)2( L3 )] / AgOTf [ L3 =(S)‐(−)‐MeO‐biphep], determined through competition experiments, correlate (r2=0.996) with the substituent constants σ. The slope value is −2.30, revealing both the build‐up of positive charge at the allene and electrophilic nature of the reactive AuI species. Two plausible reaction pathways were investigated by density functional theory calculations, one pathway involving intermolecular nucleophilic addition of free indole to aurated allene intermediate and another pathway involving intramolecular nucleophilic addition of aurated indole to allene via diaurated intermediate E2 . Calculated results revealed that the reaction likely proceeds via the first pathway with a lower activation energy. The role of AuI AuI interactions in affecting the enantioselectivity is discussed.  相似文献   

2.
The gas‐phase internal elimination (Ei) reaction of ethyl xanthate (CH3‐CH2‐S‐CS‐O‐CH3) has been investigated by means of Hartree–Fock, second‐order Møller–Plesset, and density functional theory (DFT) using the Becke three‐parameter Lee–Yang–Parr (B3LYP) functional and the modified Perdew–Wang one‐parameter model for kinetics (MPW1K). Considerable differences between the ground‐ and transition‐state geometries and the calculated activation energies are observed from one approach to the other, which justifies first a careful calibration of the methods against the results of benchmark CCSD(T) calculations. Compared with these, DFT calculations along with the MPW1K functional are found to be an appropriate choice for describing the Ei reaction of xanthate precursors. The precursor conformation and the transition states involved in the internal conversion of xanthate precursors of cyano derivatives of ethylene, and of cis‐ and trans‐stilbene, are then characterized in detail by means of this functional. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 2023–2031, 2003  相似文献   

3.
The electronic structure and the spectroscopic properties of [Au2(CS3)2]?2, [Au2(pym‐2‐S)2] (pym = pyrimidethiolate), [Au2(dpm)2]+2 (dpm = bis(diphosphino)methane) were studied using density functional theory (DFT) at the B3LYP level. The absorption spectrum of these binuclear gold(I) complexes was calculated by single excitation time‐dependent (TD) method. All complexes showed a 1(5dσ* → 6pσ) transition associated with a metal–metal charge transfer, which is strongly interrelated with the gold–gold distance. Furthermore, we have calculated the frequency of the gold–gold vibration (νAu2) on the above complexes. The values obtained are theoretically in agreement with experimental range. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

4.
The reaction of [Au(C?C?n‐Bu)]n with [Pd(η3‐allyl)Cl(PPh3)] results in a ligand and alkynyl rearrangement, and leads to the heterometallic complex [Pd(η3‐allyl){Au(C?C?n‐Bu)2}]2 ( 3 ) with an unprecedented bridging bisalkynyl–gold ligand coordinated to palladium. This is a formal gold‐to‐gold transmetalation that occurs through reversible alkynyl transmetalations between gold and palladium.  相似文献   

5.
6.
The reaction of [O(AuPPh3)3]+BF4 with a Li, K derivative ofo-cresol followed by the interaction of the reaction product with CO2 gave (triphenylphosphine)gold acetate. The reaction of ClAuPPh3 witho-LiC6H4SLi afforded (triphenylphosphine)gold thiophenoxide. According to the data of X-ray structural analysis, the latter occurs as a dimer formed through an intermolecular secondary Au…Au bond. The reaction of this complex with diazomethane was accompanied by insertion of carbene into the Au−S bond to form a new gold complex, PhSCH2AuPPh3. The reactions with PPh3Au+BF4 or HBF4 yielded a new tetranuclear gold thiocluster, {[PhS(AuPPh3)2]2+(BF4 )}2, which involves Au…Au bonds that differ in strength. The structures of the compounds obtained were established by X-ray structural analysis1H and31P NMR spectroscopy, and FAB mass spectrometry. For Part 4, seeIzv. Akad. Nauk, Ser. Khim., 1997, 2244 [Russ. Chem. Bull., 1997,46 2127 (Engl. Transl)]. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2 pp. 350–355, February, 1998.  相似文献   

7.
The cationic pseudo‐square‐planar complex tetrakis(1‐methyl‐2,3‐dihydro‐1H‐imidazole‐2‐thione‐κS)gold(III) trichloride sesquihydrate, [Au(C4H6N2S)4]Cl3·1.5H2O, was isolated as dark‐red crystals from the reaction of chloroauric acid trihydrate (HAuCl4·3H2O) with four equivalents of methimazole in methanol. The AuIII atoms reside at the corners of the unit cell on an inversion center and are bound by the S atoms of four methimazole ligands in a planar arrangement, with S—Au—S bond angles of approximately 90°.  相似文献   

8.
A gold‐catalyzed cycloisomerization of silyl‐protected 2‐(1‐alkynyl)‐2‐alken‐1‐(2‐furanyl)‐1‐ols with various nucleophiles including water, alcohol, aniline, sulfonamide, and electron‐rich arene has been developed. The method provides a highly efficient access to 5,7‐disubstituted or 2,5,7‐trisubstituted benzo[b]furans with a wide diversity of substituents under mild reaction conditions, which are not easily available by other methods. Remarkably, an interesting rearrangement of the alkyl group from C2 to the C3 position of the furan ring takes place during the cyclization process. The following gold‐assisted allylic substitution enables an elaboration of benzo[b]furans on its side chain of the C5 position with a wide range of functional groups.  相似文献   

9.
The reaction of N2 with trinuclear niobium and tungsten sulfide clusters Nb3Sn and W3Sn (n=0–3) was systematically studied by density functional theory calculations with TPSS functional and Def2-TZVP basis sets. Dissociations of N−N bonds on these clusters are all thermodynamically allowed but with different reactivity in kinetics. The reactivity of Nb3Sn is generally higher than that of W3Sn. In the favorite reaction pathways, the adsorbed N2 changes the adsorption sites from one metal atom to the bridge site of two metal atoms, then on the hollow site of three metal atoms, and at that place, the N−N bond dissociates. As the number of ligand S atoms increases, the reactivity of Nb3Sn decreases because of the hindering effect of S atoms, while W3S and W3S2 have the highest reactivity among four W3Sn clusters. The Mayer bond order, bond length, vibrational frequency, and electronic charges of the adsorbed N2 are analyzed along the reaction pathways to show the activation process of the N−N bond in reactions. The charge transfer from the clusters to the N2 antibonding orbitals plays an essential role in N−N bond activation, which is more significant in Nb3Sn than in W3Sn, leading to the higher reactivity of Nb3Sn. The reaction mechanisms found in this work may provide important theoretical guidance for the further rational design of related catalytic systems for nitrogen reduction reactions (NRR).  相似文献   

10.
A general scheme for the endo‐ and exo‐cyclization of furan reactivity with [L ‐AuIII, IClx] with (x = 3, 1 and L ‐acetylene and vinylidene) complexes is investigated using density functional theory (DFT) code. Two conceivable mechanisms via a [4 + 2] Diels–Alder process or carbene complex are analyzed. According to the activation energy values of the gold (III and I) catalyst, the first mechanism, which implies the Diels–Alder reaction of AuIII, is thermodynamically favored and gives more evidence of the intramolecular addition of the furan with the alkynes. The second mechanism, presumably assisted by the spontaneous formation of the exo‐vinylidene complexes and intermediates of gold (III, I) by forming the carbene complex, is kinetically favored. Additionally, we compare our results with other structures with intramolecular additions that exhibit the quasi‐similarity of gold analogue structures. Differences in activation energies are observed, according to the functional used. Finally, we probe the solvent effects, which decrease the energy barrier in the path. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

11.
The chemoselective cyclization of isocyanates with 2H-azirine was achieved with AuBr3 as catalyst. This transfer sets the stage for the synthesis of aromatic oxazole-ureas in a tandem process. The addition of a catalytic amount of phosphite enhances the process enormously. The reaction can also be performed in a one-pot process using benzoyl azide instead of isocyanate under the same conditions. A detailed study on the role of the phosphite that was applied as an additive revealed that only non-coordinated phosphite can reduce gold(III) and that gold(I) coordinated phosphite is not oxidized. Accompanied by the reduction of gold, HBr is generated in situ, which turned out to be the actual promotor in combination with the remaining AuBr3. The positive effect of acid can be explained by a strong N–Au coordination, which tends to break more easily in the presence of small amount of protic acid in the reaction solution.  相似文献   

12.
Barium thio‐oxocobaltate(II), Ba[CoS2/2O2/2], was synthesized by the reaction of equimolar amounts of BaO, Co, and S in closed silica ampoules. The title compound (Cmcm, a=3.98808(3), b=12.75518(9), c=6.10697(4) Å) is isostructural to Ba[ZnSO]. The use of soft X‐ray absorption spectroscopy confirmed that cobalt is in the oxidation state +2 and tetrahedrally coordinated. Its coordination consists of two sulfur and two oxygen atoms in an ordered fashion. High‐temperature magnetic susceptibility data indicate strong low‐dimensional spin–spin interactions, which are suggested to be closely related to the layer‐type crystal structure and perhaps the ordered distribution of sulfur and oxygen. Antiferromagnetic ordering below TN=222 K is observed as an anomaly in the specific heat, coinciding with a significant lowering of the magnetic susceptibility. Density functional theory calculations within a generalized‐gradient approximation (GGA)+U approach identify an antiferromagnetic ground state within the square‐like two‐dimensional layers of Co, and antiferromagnetic correlations for nearest and next nearest neighbors along bonds mediated by oxygen or sulfur. However, this magnetic state is subject to frustration by relatively strong interlayer couplings.  相似文献   

13.
Summary The kinetics of the reaction between nitrous acid and gold(III) in an HCl medium was studied. The reaction was first order with respect to [AuIII] and [HNO2]·H+ and Cl- ions inhibit the rate and alkali metal ions have specific effects on the rate. The reaction appears to involve different gold(III) species, viz. AuCl inf4 sup– , AuCl3(OH2) and AuCl3(OH), which undergo a two-equivalent reduction to gold(I) leading to the formation of NO inf2 sup+ which under-goes rapid hydrolysis to give nitric acid.  相似文献   

14.
This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).  相似文献   

15.
The three (O‐methyl)‐p‐ethoxyphenyldithiophosphonato triphenylphosphine complexes of copper, silver and gold, [(Ph3P)nM{S2P(OMe)C6H4OEt‐p}] (M = Cu, n = 2; M = Ag, Au, n = 1) investigated structurally by X‐ray diffraction exhibit remarkable structural differences. The copper compound is a four‐coordinate chelate monomer with Cu–S 2.4417(6) and 2.5048(6) Å; P–Cu–S 104.24(2)–114.01(2)°; Cu–S–P 82.49(3)° and 80.85(2)°. The silver compound is a cyclic dimer with bridging dithiophosphonato ligands and three‐coordinate silver atoms [Ag–S 2.5371(5) and 2.6867(5) Å; P–Ag–S 122.88(2)° and 122.17(2)°; Ag–S–P 89.32(2)° and 103.56(2)°]. The gold compound is monomeric with linear dicoordinate gold [Au–S 2.3218(6) Å; P–Au–S 177.72(2)°, Au–S–P 100.97(3)°].  相似文献   

16.
The Pd‐catalyzed reactions of 3‐chloro‐bodipy with R2PH (R=Ph, Cy) provide nonfluorescent bodipy–phosphines 3‐PR2–bodipy 3 a (R=Ph) and 3 b (R=Cy; quantum yield Φ<0.001). Metal complexes such as [AgCl( 3 b )] and [AuCl( 3 b )] were prepared and shown to display much higher fluorescence (Φ=0.073 and 0.096). In the gold complexes, the level of fluorescence was found to be qualitatively correlated with the electron density at gold. Consequently, the fluorescence brightness of [AuCl( 3 b )] increases when the chloro ligand is replaced by a weakly coordinating anion, whereas upon formation of the electron‐rich complex [Au(SR)( 3 b )] the fluorescence is almost quenched. Related reactions of [AuCl( 3 b )] with [Ag]ONf)] (Nf= nonaflate) and phenyl acetylenes enable the tracking of initial steps in gold‐catalyzed reactions by using fluorescence spectroscopy. Treatment of [AuCl( 3 b )] with [Ag(ONf)] gave the respective [Au(ONf)( 3 b )] only when employing more than 2.5 equivalents of silver salt. The reaction of the “cationic” gold complex with phenyl acetylenes leads to the formation of the respective dinuclear cationic [{( 3 b )Au}2(CCPh)]+ and an increase in the level of fluorescence. The rate of the reaction of [Au(ONf)( 3 b )] with PhCCH depends on the amount of silver salt in the reaction mixture; a large excess of silver salt accelerates this transformation. In situ fluorescence spectroscopy thus provides valuable information on the association of gold complexes with acetylenes.  相似文献   

17.
Amperometric immunosensors for the detection and quantification of S. aureus using MPA self‐assembled monolayer modified electrodes for the immobilization of the immunoreagents are reported. Two different immunosensor configurations were compared. A competitive mode, in which protein A‐bearing S. aureus cells and antiRbIgG labeled with horseradish peroxidase (HRP) compete for the binding sites of RbIgG immobilized onto the 3‐mercaptopropionic acid (MPA) modified electrode, was evaluated. Moreover, a sandwich configuration in which S. aureus cells were immobilized onto the MPA SAM, and RbIgG and antiRbIgG labeled with HRP were further linked to the electrode surface, was also tested. In both cases, TTF was used as the redox mediator of the HRP reaction with H2O2, and it was co‐immobilized onto the MPA‐modified gold electrode. After optimization of the working variables for both configurations, the analytical performance of the amperometric measurements carried out at 0.00 V (vs. Ag/AgCl) showed that the competitive immunosensor exhibited a lower limit of detection (1.6×105 S. aureus cells mL?1), as well as a better repeatability and reproducibility of the measurements.  相似文献   

18.
An efficient method for the synthesis of tertiary amines through a gold(I)‐catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)2(o‐biphenyl)P}AuCl]/AgBF4 (2 mol %), a variety of secondary amines bearing electron‐deficient and electron‐rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron‐deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)2(o‐biphenyl)P}AuCl]/AgBF4 (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one‐pot reaction from simple and readily available starting materials without the need of isolation of air/moisture‐sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI‐MS, isotope labeling studies, and DFT calculations on this gold(I)‐catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)–alkyne intermediate is more likely than a gold(I)–amine intermediate, a three‐coordinate gold(I) intermediate, or a dinuclear gold(I)–alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)‐coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments.  相似文献   

19.
Dinuclear gold(I)-N-heterocyclic carbene complexes were developed for the hydrohydrazidation of terminal alkynes. The gold(I)-N-heterocyclic carbene complexes 2a-2b were synthesized in good yields from silver complexes synthesized in situ, which in turn were obtained from the corresponding imidazolium salts with Ag2O in dichloromethane as a solvent. The new air-stable gold(I)-NHC complexes, 2a - 2b, were characterized using NMR spectroscopy, elemental analysis, infrared, and mass spectroscopy studies. The gold(I) complex 2a was characterized using X-ray crystallography. Bis-N-heterocyclic carbene–based gold(I) complexes 2a - 2b exhibited excellent catalytic activities for hydrohydrazidation of terminal alkynes yielding acylhydrazone derivatives. The working catalytic system can be used in gram-scale synthesis. In addition, the catalytic reaction mechanism of the hydrohydrazidation of terminal alkynes by gold(I)-NHC complex was studied in detail using density functional theory.  相似文献   

20.
The conversion of simple, easily available urea‐substituted 3‐phenylpropargyl alcohols catalyzed by a simple IPr–gold(I) catalyst in a gold(I)‐catalyzed cascade reaction composing of a gold‐catalyzed nucleophilic addition and a subsequent gold‐catalyzed substitution reaction delivers 1H‐imidazo[1, 5?a]indol‐3(2 H)‐ones. Other gold(I) catalysts or silver catalysts gave lower yields and often gave other side products. Gold(III) and copper(II) catalysts decomposed the starting material. Twelve examples, including donor and acceptor substituents on the distal nitrogen of the urea substructure, are provided. An X‐ray crystal structure analysis confirmed the structural assignment. The mechanistic investigation including isolation and further conversion of intermediates and reactions with enantiopure starting materials indicated that after the nucleophilic‐addition step, the substrate undergoes an SN1‐type benzylic substitution reaction at the indolyl alcohol intermediate or an intramolecular hydroamination reaction of the 2‐vinylindole intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号