首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Here, we report a two-phase crystalline NiWO4/amorphous Co−B nanocomposite as an electrode material for supercapacitors, which is effectively synthesized via a simple hydrothermal method and chemical precipitation method. The obtained NiWO4/Co−B exhibits crystal-amorphous contact, which makes it have more active sites than other crystalline-crystalline phase boundaries, thereby enhancing electron transport. The NiWO4/Co−B electrode with the best mass ratio of crystalline and amorphous exhibits a great specific capacitance and excellent cycle durability. Compared to individual Co−B and NiWO4, it also shows enhanced rate capability Besides, NiWO4/Co−B/activated carbon supercapacitor device can provide a good specific capacitance and a maximum energy density of 10.92 Wh kg−1 at 200 W kg−1. This work provides new insights to develop novel electrode materials for energy storage and conversion.  相似文献   

2.
The orthorhombic crystal structure of [Co2(CO)6(μ‐CO)(μ‐C4O2H2)] ( 1 ) was determined at 150 K (Fig. 1). Two C−H⋅⋅⋅O bonds connect the molecules, forming waving ribbons along the b axis. The experimental electron density, determined with the aspherical‐atom formalism, was analyzed with the topological theory of molecular structure. The presence of the Co−Co bond critical point indicates for the first time the existence of a metal−metal bond in a system with bridged ligands. The bond critical properties of the intramolecular bonds and of the intermolecular interactions show features similar to those found in [Mn2(CO)10], confirming our previously established bonding classification for organometallic and coordination compounds.  相似文献   

3.
Developing cost-effective and sustainable acidic water oxidation catalysts requires significant advances in material design and in-depth mechanism understanding for proton exchange membrane water electrolysis. Herein, we developed a single atom regulatory strategy to construct Co−Co dinuclear active sites (DASs) catalysts that atomically dispersed zirconium doped Co9S8/Co3O4 heterostructure. The X-ray absorption fine structure elucidated the incorporation of Zr greatly facilitated the generation of Co−Co DASs layer with stretching of cobalt oxygen bond and S−Co−O heterogeneous grain boundaries interfaces, engineering attractive activity of significantly reduced overpotential of 75 mV at 10 mA cm−2, a breakthrough of 500 mA cm−2 high current density, and water splitting stability of 500 hours in acid, making it one of the best-performing acid-stable OER non-noble metal materials. The optimized catalyst with interatomic Co−Co distance (ca. 2.80 Å) followed oxo-oxo coupling mechanism that involved obvious oxygen bridges on dinuclear Co sites (1,090 cm−1), confirmed by in situ SR-FTIR, XAFS and theoretical simulations. Furthermore, a major breakthrough of 120,000 mA g−1 high mass current density using the first reported noble metal-free cobalt anode catalyst of Co−Co DASs/ZCC in PEM-WE at 2.14 V was recorded.  相似文献   

4.
We report herein on the effect of the PVdF binder on the stability of composite LiCoO2 electrodes at elevated temperatures in 1 M LiPF6 EC/EMC solutions at open circuit conditions. The structure and morphology of composite LiCoO2 electrodes with different combinations of electrode components (LiCoO2 active material, PVdF binder, carbon black and current collector) were evaluated by Raman spectroscopy, X-ray diffraction and SEM. The content of Co ions in the electrolyte solutions was determined by ICP. A new effect was discovered, namely, a detrimental impact of the contact between PVdF and LiCoO2 on the stability of the active mass. The formation of surface Co3O4 and dissolution of Co ions at elevated temperatures is accelerated at the contact points between the active mass and the binder. The effect of water content in the electrolyte solutions on the stability of LiCoO2 was also studied. The presence of water (and/or HF) is a necessary condition for the accelerated dissolution of Co ions from the active mass. LiCoO2 oxidizes the solvents at elevated temperatures thus forming CO2.  相似文献   

5.
Layered structural lithium metal oxides with rhombohedral α-NaFeO2 crystal structure have been proven to be particularly suitable for application as cathode materials in lithium-ion batteries. Compared with LiCoO2, lithium nickel manganese oxides are promising, inexpensive, nontoxic, and have high thermal stability; thus, they are extensively studied as alternative cathode electrode materials to the commercial LiCoO2 electrode. However, a lot of work needs to be done to reduce cost and extend the effective lifetime. In this paper, the development of the layered lithium nickel manganese oxide cathode materials is reviewed from synthesis method, coating, doping to modification, lithium-rich materials, nanostructured materials, and so on, which can make electrochemical performance better. The prospects of lithium nickel manganese oxides as cathode materials for lithium-ion batteries are also looked forward to.  相似文献   

6.
High-capacity small organic materials are plagued by their high solubility. Here we proposed constructing hydrogen bond networks (HBN) via intermolecular hydrogen bonds to suppress the solubility of active material. The illustrated 2, 7- diamino-4, 5, 9, 10-tetraone (PTO-NH2) molecule with intermolecular hydrogen (H) bond between O in −C=O and H in −NH2, which make PTO-NH2 presents transverse two-dimensional extension and longitudinal π–π stacking structure. In situ Fourier transform infrared spectroscopy (FTIR) has tracked the reversible evolution of H-bonds, further confirming the existence of HBN structure can stabilize the intermediate 2-electron reaction state. Therefore, PTO-NH2 with HBN structure has higher active site utilization (95 %), better cycle stability and rate performance. This study uncovers the H-bond effect and evolution during the electrochemical process and provides a strategy for materials design.  相似文献   

7.
The covalent nature of the low-barrier N−H−N hydrogen bonds in the negative thermal expansion material H3[Co(CN)6] has been established by using a combination of X-ray and neutron diffraction electron density analysis and theoretical calculations. This finding explains why negative thermal expansion can occur in a material not commonly considered to be built from rigid linkers. The pertinent hydrogen atom is located symmetrically between two nitrogen atoms in a double-well potential with hydrogen above the barrier for proton transfer, thus forming a low-barrier hydrogen bond. Hydrogen is covalently bonded to the two nitrogen atoms, which is the first experimentally confirmed covalent hydrogen bond in a network structure. Source function calculations established that the present N−H−N hydrogen bond follows the trends observed for negatively charge-assisted hydrogen bonds and low-barrier hydrogen bonds previously established for O−H−O hydrogen bonds. The bonding between the cobalt and cyanide ligands was found to be a typical donor–acceptor bond involving a high-field ligand and a transition metal in a low-spin configuration.  相似文献   

8.
Interactions of dimethyl sulfoxide with carbon dioxide and water molecules which induce 18 significantly stable complexes are thoroughly investigated. An addition of CO2 or H2O molecules into the DMSO⋯1CO2 and DMSO⋯1H2O systems leads to an increase in the stability of the resulting complexes, in which it is larger for a H2O addition than a CO2. The overall stabilization energy of the DMSO⋯1,2CO2 is mainly contributed by the S=O⋯C Lewis acid–base interaction, whereas the O − H⋯O hydrogen bond plays a significant role in stabilizing complexes of DMSO⋯1,2H2O and DMSO⋯1CO2⋯1H2O. Remarkably, the complexes of DMSO⋯2H2O are found to be more stable than DMSO⋯1CO2⋯1H2O and DMSO⋯2CO2. The level of the cooperativity of multiple interactions in ternary complexes tends to decrease in going from DMSO⋯2H2O to DMSO⋯1CO2⋯1H2O and finally to DMSO⋯2CO2. It is generally found that the red shift of the O − H bond involved in an O − H⋯O hydrogen bond increases while the blue shift of a C − H bond in a C − H⋯O hydrogen bond decreases when a cooperative effect occurs in ternary complexes as compared to those of the corresponding binary complexes. © 2018 Wiley Periodicals, Inc.  相似文献   

9.
《Polyhedron》2001,20(15-16):1885-1890
The macrocycle L, prepared by template condensation of bis-6,6′′-(α-methylhidrazino)-4′-phenyl-2,2′:6′′,2′-terpyridine with glyoxal, forms a stable crystalline complex of cobalt(II) [Co(L)(H2O)2][PF6]2 which has been used as a starting material to prepare, for electrochemical studies, a series of seven coordinate cobalt(II) complexes [Co(L)X2][PF6]2 (X=pyridine, 4-cianopyridine, 4-aminopyridine, 4-dimethylaminopyridine, pirazine, imidazole, 1-methylimidazole, 2-methylimidazole, and trimethylphosphite). Cyclic voltammetry of the aquo complex in DMSO show one reversible reduction wave at −1.35 V versus Ag  AgBF4 reference electrode and controlled potential electrolysis in the presence of trimethylphosphite affords a diamagnetic species which has been assigned as a mononuclear d8 Co(I) species. The crystal and molecular structure of [Co(L)(imidazole)2][PF6]2·Me2CO shows the metal to be in a pentagonal-bipyramidal N7 environment.  相似文献   

10.
B12 antivitamins are important and robust tools for investigating the biological roles of vitamin B12. Here, the potential antivitamin B12 2,4-difluorophenylethynylcobalamin (F2PhEtyCbl) was prepared, and its 3D structure was studied in solution and in the crystal. Chemically inert F2PhEtyCbl resisted thermolysis of its Co−C bond at 100 °C, was stable in bright daylight, and also remained intact upon prolonged storage in aqueous solution at room temperature. It binds to the human B12-processing enzyme CblC with high affinity (KD=130 nm ) in the presence of the cosubstrate glutathione (GSH). F2PhEtyCbl withstood tailoring by CblC, and it also stabilized the ternary complex with GSH. The crystal structure of this inactivated assembly provides first insight into the binding interactions between an antivitamin B12 and CblC, as well as into the organization of GSH and a base-off cobalamin in the active site of this enzyme.  相似文献   

11.
Three-dimensionally ordered macroporous (3DOM) LiCoO2 was synthesized by colloidal crystal templating method using poly(methyl methacrylate) with the diameter of 232 nm as the template. The effects of roasting temperature on properties of LiCoO2 cathode materials were investigated by thermogravimetric analysis (TG-DTG), scanning electron microscope, X-ray diffraction, transmission electron microscopy, and electrochemical measurements. The results indicated that the synthesized 3DOM LiCoO2 calcined at 700 °C had better crystal framework and electrochemical properties. The 3DOM LiCoO2 samples presented higher rate capacity compared to commercial LiCoO2 with a specific discharge capacity of 151.2 mAh g?1 at a current density of 1 C, and 92 % of the specific discharge capacity was retained after 50 charge–discharge cycling.  相似文献   

12.
Formulas for decomposing of complex crystals to a sum of binary crystals are described and applied to the study of bond covalency in La1−xSrxFeO3 (0.0≤x≤0.9) and Ca1−xSrxMnO3 (0.0≤x≤0.5). The bond valence is treated by bond-valence sums scheme. The results indicate that, for both compounds, with the increasing doping level, the bond covalency and bond valence show the same trend, namely, larger bond covalency corresponds to higher bond valence. For La1−xSrxFeO3, with the increase of doping level, the bond covalency of La−O, Ca−O decreases in the orthorhombic (0.0≤x≤0.2) and rhombohedral (0.4≤x≤0.7) systems, then increases slightly for the cubic (0.8≤x≤0.9) system, but that of Fe−O increases for all crystal systems. A sharp decrease in bond covalency was observed where the crystal changes from orthorhombic to rhombohedral, while a smooth trend was seen for the rhombohedral-to-cubic transition. On the other hand, for orthorhombic Ca1−xSrxMnO3, the bond covalency of Ca−O, Sr−O, and Mn−O (4-coordinate site) decreases with the increasing doping level, that of Mn−O (2-coordinate site) increases.  相似文献   

13.
Polyaniline (PANI)/LiCoO2 nanocomposite materials are successfully ready through a solid-stabilized emulsion (Pickering emulsion) route. The properties of nanocomposite materials have been put to the test because of their possible relevance to electrodes of lithium batteries. Such nanocomposite materials appear thanks to the polymerization of aniline in Pickering emulsion stabilized with LiCoO2 particles. PANI has been produced through oxidative polymerization of aniline and ammonium persulfate in HCl solution. The nanocomposite materials of PANI/LiCoO2 could be formed with low amounts of PANI. The morphology of PANI/LiCoO2 nanocomposite materials shows nanofibers and round-shape-like morphology. It was found that the morphology of the resulting nanocomposites depended on the amount of LiCoO2 used in the reaction system. Ammonium persulfate caused the loss of lithium from LiCoO2 when it was used at high concentration in the polymerization recipe. Highly resolved splitting of 006/102 and 108/110 peaks in the XRD pattern provide evidence to well-ordered layered structure of the PANI/LiCoO2 nanocomposite materials with high LiCoO2 content. The ratios of the intensities of 003 and 104 peaks were found to be higher than 1.2 indicating no pronounced mixing of the lithium and cobalt cations. The electrochemical reactivity of PANI/LiCoO2 nanocomposites as positive electrode in a lithium battery was examined during lithium ion deinsertion and insertion by galvanostatic charge–discharge testing; PANI/LiCoO2 nanocomposite materials exhibited better electrochemical performance by increasing the reaction reversibility and capacity compared to that of the pristine LiCoO2 cathode. The best advancement has been observed for the PANI/LiCoO2 nanocomposite 5 wt.% of aniline.  相似文献   

14.
Mechanical activation (MA) combined with heat treatment at moderate temperatures was used to prepare disordered and highly dispersed LiCoO2 starting from the mixtures of various cobalt precursors (CoOOH, Co(OH)2, and Co) and LiOH. X-ray powder diffraction and IR spectroscopy were used to investigate the phase composition and the crystal structure of as-prepared samples, while the electronic state of cobalt ions was characterized by diffuse reflectance electron spectroscopy. MA of the LiOH+CoOOH mixture led to the formation of LT-LiCoO2 with a cubic spinel-related structure. Heat treatment at 600°C of the latter resulted in the formation of HT-LiCoO2 with a hexagonal layered structure similar to ceramic LiCoO2. However, as-prepared HT-LiCoO2 is characterized by Co3+O6 octahedra less perfect than those of ceramic LiCoO2. All MA-LiCoO2 samples are exclusively described by localized d electrons.  相似文献   

15.
Regioselective displacement reaction of ammonia with 5-bromo-2,4-dichloro-6-methylpyrimidine was studied by X-ray crystallography analysis and showed the formation of 5-bromo-2-chloro-6-methylpyrimidin-4-amine as a main product. Reaction of the latter compound with secondary amines in boiling ethanol afforded 4-amino-5-bromo-2-substituted aminopyrimidines. The synthesized compound in this paper crystallized in the monoclinic crystal system space group P21/n. In the title cocrystal, 5-bromo-2-chloro-6-methylpyrimidin-4-amine·3H2O, the asymmetric unit contains one crystallographically independent 5-bromo-2-chloro-6-methylpyrimidin-4-amine and three crystallization of water molecules. The typical intramolecular O−H⋯N as well as O−H⋯O hydrogen bond is observed in the crystalline network of the title compound. It is interesting to point out that the crystal structure is further stabilized by O−H⋯O hydrogen bonds created by (H2O) clusters.  相似文献   

16.
Ni‐based layer‐structured cathode materials are more vulnerable to moisture than conventional LiCoO2 cathodes, adsorbing more water and easily forming LiOH on the surface. This study investigated the moisture adsorption mechanism on the surface of layer‐structured cathodes. The behavior of water molecules on LiCoO2 and LiNiO2 surfaces were simulated and the structural and chemical changes during the adsorption process were analyzed by first‐principles methods. It was found that the adsorption occurs via two types of mechanism: one involving ionic interactions between Li on the crystal surface and O in the adsorbate, and the other involving covalent bonding between the transition metal (TM) on the surface and O in the adsorbate, which restores the coordination of the TM by recovering its broken bonds. The difference between the water adsorption behaviors of Ni‐based and Co‐based layer‐structured cathodes was found to be mainly due to the ionic‐interaction‐driven adsorption on the (003) surface.  相似文献   

17.
《中国化学快报》2023,34(6):107711
Increasing the charging cut-off potential of lithium cobalt oxide (LiCoO2, LCO) can effectively improve the energy density of the lithium-ion batteries, which are the mainstream energy storage devices used in 3C electronic products. However, the continuous decomposition of the electrolyte and dissolution of Co from the electrode will occur at high-potential operation, which deteriorate the performances of LCO. Here, a cathode-electrolyte interface (CEI) layer containing MgF2 is constructed to enhance the electrochemical stability of LCO at 4.6 V (vs. Li+/Li). The Mg2+ added to the cathode gradually releases into the electrolyte during cycling, which forms a stable MgF2-rich protective layer. In addition, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether (TTE) is added to the electrolyte acting as a F source to increase the content of MgF2 in the CEI layer. The MgF2-rich CEI layer effectively suppresses the decomposition of electrolyte components and the dissolution of Co of LCO, which makes the Li||LiCoO2 (Li||LCO) cell cycled stably at 3∼4.6 V (vs. Li+/Li) in 200 cycles with a retention of 83.9%.  相似文献   

18.
Organosulfides are promising candidates as cathode materials for the development of electric vehicles and energy storage systems due to their low-cost and high capacity properties. However, they generally suffer from slow kinetics because of the large rearrangement of S−S bonds and structural degradation upon cycling in batteries. In this paper, we reveal that soluble bis(2-pyrimidyl) disulfide (Pym2S2) can be a high-rate cathode material for rechargeable lithium batteries. Benefiting from the superdelocalization of pyrimidyl group, the extra electrons prefer to be localized on the π* (pyrimidyl group) than σ* (S−S bond) molecular orbitals initially, generating the anion-like intermedia of [Pym2S2]2− and thus decreasing the dissociation energy of the S−S bond. It makes the intrinsic energy barrier of dissociative electron transfer depleted, therefore the lithium half cell exhibits 2000 cycles at 5 C. This study provides a distinct pathway for the design of high-rate, long-cycle-life organic cathode materials.  相似文献   

19.
A Co(III)−hydroxo complex, [CoIII(dpaq)OH]ClO4 ( 1-OH ) bearing a pentadentate ligand, H-dpaq, (H-dpaq=(2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-yl-acetamidate]) catalyses water oxidation in mildly alkaline medium (pH 8.0) at a potential of 1.4 VNHE with an average Turn-Over-Frequency (TOFmax) of 2.8×104 s−1 and faradaic efficiency of 88 %. Post-electrolysis characterization of the electrode rules out the formation of any heterogeneous electroactive species. Electrochemical results and theoretical calculations confirm the occurrence of both metal and ligand centered PCET processes during anodic scanning. The resulting formally Co(V)−oxo/oxyl intermediate undergoes water nucleophilic attack to install the O−O bond. The role of axial ligand in water oxidation by Co(III)−dpaq system has been examined by comparing the reactivity of the Co-hydroxide complex ( 1-OH ) with that of its chloride-ligated counterpart, [CoIII(dpaq)Cl]Cl ( 1-Cl ). The results confirm the ability of the Co-dpaq complexes to bind water/or water derived ligands over chloride or non-aqueous solvents. The interplay of ligand redox non-innocence and σ-donating ability of the N5-carboxamido ligand helps to store oxidizing equivalents and triggers O−O bond formation.  相似文献   

20.
Submicron LiCoO2 was synthesized by a polymer pyrolysis method using LiOH and Co(NO3)2 as the precursor compounds. Experimental results demonstrated that the powders calcined at 800 °C for 12 h appear as well-crystallized, uniform submicron particles with diameter of about 200 nm. As a result, the as-prepared LiCoO2 electrode displayed excellent electrochemical properties, with an initial discharge capacity of 145.5 mAh/g and capacity retention of 86.1% after 50 cycles when cycled at 50 mA/g between 3.5 and 4.25 V. When cycled between 3.5 and 4.5 V, the discharge capacity increased to 177.9 mAh/g with capacity retention of 85.6% after 50 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号