首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The supramolecular polymerization of an acid-sensitive pyridyl-based ligand ( L1 ) bearing a photoresponsive azobenzene moiety was elucidated by mechanistic studies. Addition of trifluoroacetic acid (TFA) led to the transformation of the antiparallel H-bonded fibers of L1 in methylcyclohexane into superhelical braid-like fibers stabilized by H-bonding of parallel-stacked monomer units. Interestingly, L1 dimers held together by unconventional pyridine–TFA N⋅⋅⋅H⋅⋅⋅O bridges represent the main structural elements of the assembly. UV-light irradiation caused a strain-driven disassembly and subsequent aggregate reconstruction, which ultimately led to short fibers. The results allowed to understand the mechanism of mutual influence of acid and light stimuli on supramolecular polymerization processes, thus opening up new possibilities to design advanced stimuli-triggered supramolecular systems.  相似文献   

2.
Fiber-reinforced-concrete (FRC) mechanism refers short discrete fibers that are uniformly distributed and randomly oriented, which offers an effective way to improve the mechanical performance of concrete. In the design of supramolecular polymers, an analogous concept of FRC appears to have been considered very rarely-although fibrous structure has been frequently observed/generated during the supramolecular polymerization. In this work, we apply the alkane thermosets, octadecane (C18H38) and tetracosane (C24H50), taking the role of “concrete”, and the low-molecular-weight monomer with long alkyl chains as the essential “fiber” component, to fabricate the “fiber reinforced supramolecular polymer”. Very much like FRC mechanism in material science, the resulting fiber reinforced supramolecular polymer thus exhibit unusually high mechanical strength and stiffness, which is unprecedented in the conventional supramolecular strategy.  相似文献   

3.
A comprehensive understanding of the structure, self-assembly mechanism, and dynamics of one-dimensional supramolecular polymers in water is essential for their application as biomaterials. Although a plethora of techniques are available to study the first two properties, there is a paucity in possibilities to study dynamic exchange of monomers between supramolecular polymers in solution. We recently introduced hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize the dynamic nature of synthetic supramolecular polymers with only a minimal perturbation of the chemical structure. To further expand the application of this powerful technique some essential experimental aspects have been reaffirmed and the technique has been applied to a diverse library of assemblies. HDX-MS is widely applicable if there are exchangeable hydrogen atoms protected from direct contact with the solvent and if the monomer concentration is sufficiently high to ensure the presence of supramolecular polymers during dilution. In addition, we demonstrate that the kinetic behavior as probed by HDX-MS is influenced by the internal order within the supramolecular polymers and by the self-assembly mechanism.  相似文献   

4.
Molecular motions are closely associated with the behaviors and properties of organic materials. However, monitoring molecular motions is challenging. Herein, a chiral supramolecular system consisting of L-/D-phenylalanine (LPF/DPF) as a chiral inducer and an achiral tetraphenylethene derivative (TPEF) as a molecular rotor has been proposed and explored for real-time discriminating the supramolecular motions by the visualization of circularly polarized luminescence (CPL) signal variations. Derived from the ordered molecular motions of TPEF induced by LPF/DPF, highly organized aggregates have been progressively assembled in a controlled manner with differentiated morphologies, including spherical particles, one-dimensional fibers, and floor-shaped supercrystals. Notably, increasing level of ordered aggregates, in turn, led to quenching emissions, while the CPL signals have been dramatically amplified accompanying by a sharp enhancement of luminescence dissymmetry factors (glum) from nearly 0 to −0.1. The significant amplification of CPL is attributed to the ordered aggregates of supramolecules, leading to the decrease of electric transition dipole moments in supramolecular system. As a result of the chiral supramolecular motions powered by supramolecular crystallization, the supramolecular motions are conveniently discriminated by visual CPL signal variation with an enhancement of glum value from 0 to −0.1 in real time.  相似文献   

5.
Recent developments in kinetically controlled supramolecular polymerization permit control of the size (i.e., length and area) of self-assembled nanostructures. However, control of molecular self-assembly at a level comparable with organic synthetic chemistry and the achievement of structural complexity at a hierarchy larger than the molecular level remain challenging. This study focuses on controlling the aspect ratio of supramolecular nanosheets. A systematic understanding of the relationship between the monomer structure and the self-assembly energy landscape has derived a new monomer capable of forming supramolecular nanosheets. With this monomer in hand, the aspect ratio of a supramolecular nanosheet is demonstrated that it can be controlled by modulating intermolecular interactions in two dimensions.  相似文献   

6.
Quasi‐block copolymers (q‐BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end‐terminated by a functionality that interacts with the supramolecular monomer (a “chain stopper” functionality). A new design of q‐BCPs based on a general polymeric chain stopper, which consists of polystyrene end‐terminated with a sulfonate group (PS‐SO3Li), is described. Through viscosity measurements and a detailed diffusion‐ordered NMR spectroscopy study, it is shown that PS‐SO3Li can effectively cap two types of model supramolecular monomers to form q‐BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q‐BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q‐BCPs as smart, nanostructured materials.  相似文献   

7.
A biscalix[5]arene–C60 supramolecular structure was utilized for the development of supramolecular fullerene polymers. Di‐ and tritopic hosts were developed to generate the linear and network supramolecular polymers through the complexation of a dumbbell‐shaped fullerene. The molecular association between the hosts and the fullerene were carefully studied by using 1H NMR, UV/Vis absorption, and fluorescence spectroscopy. The formation of the supramolecular fullerene polymers and networks was confirmed by diffusion‐ordered 1H NMR spectroscopy (DOSY) and solution viscometry. Upon concentrating the mixtures of di‐ or tritopic hosts and dumbbell‐shaped fullerene in the range of 1.0–10 mmol L?1, the diffusion coefficients of the complexes decreased, and the solution viscosities increased, suggesting that large polymeric assemblies were formed in solution. Scanning electron microscopy (SEM) was used to image the supramolecular fullerene polymers and networks. Atomic force microscopy (AFM) provided insight into the morphology of the supramolecular polymers. A mixture of the homoditopic host and the fullerene resulted in fibers with a height of (1.4±0.1) nm and a width of (5.0±0.8) nm. Interdigitation of the alkyl side chains provided secondary interchain interactions that facilitated supramolecular organization. The homotritopic host generated the supramolecular networks with the dumbbell‐shaped fullerene. Honeycomb sheet‐like structures with many voids were found. The growth of the supramolecular polymers is evidently governed by the shape, dimension, and directionality of the monomers.  相似文献   

8.
Supramolecular polymers based on dispersion forces typically show lower molecular weights (MW) than those based on hydrogen bonding or metal–ligand coordination. We present the synthesis and self‐assembling properties of a monomer featuring two complementary units, a C60 derivative and an exTTF‐based macrocycle, that interact mainly through π–π, charge‐transfer, and van der Waals interactions. Thanks to the preorganization in the host part, a remarkable log Ka=5.1±0.5 in CHCl3 at room temperature is determined for the host–guest couple. In accordance with the large binding constant, the monomer self‐assembles in the gas phase, in solution, and in the solid state to form linear supramolecular polymers with a very high degree of polymerization. A MW above 150 kDa has been found experimentally in solution, while in the solid state the monomer forms extraordinarily long, straight, and uniform fibers with lengths reaching several microns.  相似文献   

9.
We report a supramolecular strategy for promoting the selective reduction of O2 for direct electrosynthesis of H2O2. We utilized cobalt tetraphenylporphyrin (Co‐TPP), an oxygen reduction reaction (ORR) catalyst with highly variable product selectivity, as a building block to assemble the permanently porous supramolecular cage Co‐PB‐1(6) bearing six Co‐TPP subunits connected through twenty‐four imine bonds. Reduction of these imine linkers to amines yields the more flexible cage Co‐rPB‐1(6). Both Co‐PB‐1(6) and Co‐rPB‐1(6) cages produce 90–100 % H2O2 from electrochemical ORR catalysis in neutral pH water, whereas the Co‐TPP monomer gives a 50 % mixture of H2O2 and H2O. Bimolecular pathways have been implicated in facilitating H2O formation, therefore, we attribute this high H2O2 selectivity to site isolation of the discrete molecular units in each supramolecule. The ability to control reaction selectivity in supramolecular structures beyond traditional host–guest interactions offers new opportunities for designing such architectures for a broader range of catalytic applications.  相似文献   

10.
Construction of single‐component supramolecular triangle and unprecedented spontaneous resolution of pairs of intertwined supramolecular 31‐ and 32‐double helices by the self‐assembly of achiral 2‐(iodoethynyl)pyridine and its derivatives have been achieved through intermolecular ethynyl C?I????N halogen bonds in the crystalline state. Fine‐tuning of the molecular structure of the achiral monomer and choice of solvents for crystallization have a dominant effect on the resultant supramolecular architectures.  相似文献   

11.
A systematic study of the influence of solvent and the size of C3‐symmetric discotics on their supramolecular polymerization mechanism is presented. The cooperativity of the self‐assembly of the reported compounds is directly related to their gelation ability. The two series of C3‐symmetric discotics investigated herein are based on benzene‐1,3,5‐tricarboxamides (BTAs) and oligo(phenylene ethynylene)‐based tricarboxamides (OPE? TAs) that are peripherally decorated with achiral ( 1 a and 2 a ) or chiral N‐(2‐aminoethyl)‐3,4,5‐trialkoxybenzamide units ( 1 b and 2 b ). The supramolecular polymerization of compounds 1 a , b and 2 a , b has been exhaustively investigated in a number of solvents and by using various techniques: variable‐temperature circular dichroism (VT‐CD) spectroscopy, concentration‐dependent 1H NMR spectroscopy, and isothermal titration calorimetry (ITC). The supramolecular polymerization mechanism of compounds 2 is highly cooperative in solvents such as methylcyclohexane and toluene and is isodesmic in CHCl3. Unexpectedly, chiral compound 1 b is practically CD‐silent, in contrast with previously reported BTAs. ITC measurements in CHCl3 demonstrated that the supramolecular polymerization of BTA 1 a is isodesmic. These results confirm the strong influence of the π‐surface of the central aromatic core of the studied discotic and the branched nature of the peripheral side chains on the supramolecular polymerization. The gelation ability of these organogelators is negated in CHCl3, in which the supramolecular polymerization mechanism is isodesmic.  相似文献   

12.
Photoinduced charge separation in supramolecular aggregates of π-conjugated molecules is a fundamental photophysical process and a key criterion for the development of advanced organic electronics materials. Herein, the self-assembly of low-band-gap chromophores into helical one-dimensional aggregates, due to intermolecular hydrogen bonding, is reported. Chromophores confined in these supramolecular polymers show strong excitonic coupling interactions and give rise to charge-separated states with unusually long lifetimes of several hours and charge densities of up to 5 mol % after illumination with white light. Two-contact devices exhibit increased photoconductivity and can even show Ohmic behavior. These findings demonstrate that the confinement of organic semiconductors into one-dimensional aggregates results in a considerable stabilization of charge carriers for a variety of π-conjugated systems, which may have implications for the design of future organic electronic materials.  相似文献   

13.
The self-assembly of an amide-functionalized dithienyldiketopyrrolopyrrole (DPP) dye in aqueous media was achieved through seed-initiated supramolecular polymerization. Temperature- and time-dependent studies showed that the spontaneous polymerization of the DPP derivative was temporally delayed upon cooling the monomer solution in a methanol/water mixture. Theoretical calculations revealed that an amide-functionalized DPP derivative adopts an energetically favorable folded conformation in the presence of water molecules due to hydration. This conformational change is most likely responsible for the trapping of monomers in the initial stage of the cooperative supramolecular polymerization in aqueous media. However, the monomeric species can selectively interact with externally added fragmented aggregates as seeds through concerted π-stacking and hydrogen-bonding interactions. Consequently, the time course of the supramolecular polymerization and the morphology of the aggregated state can be controlled, and one-dimensional fibers that exhibit a J-aggregate-like bathochromically shifted absorption band can be obtained.  相似文献   

14.
A new type of supramolecular polymer was prepared by ionic self-assembly (ISA) from two oppositely charged dyes; a perylenediimide and a copper-phthalocyanine derivative. Coulomb coupling stabilizes the whole structure, and a combination of charge-transfer interactions and discotic stacking facilitates the exclusive formation of one-dimensional polymeric chains. The supramolecular dye-polymers have a large association constant (2.4 x 10(7) L mol(-1)), high molecular weight, and high mechanical stability. The use of cryo-transmission electron microscopy (cryo-TEM) confirmed the existence of extended fibers of width 2.4 nm. Further image analysis revealed slight undulation and faint segmentation of the fibers, and density maxima were observed at a regular interval of 3.6 nm along the fiber axis. The fiber-like structure (and aggregate of fibers) is also found in the solid state, as shown by the results of mineralization contrasting experiments, atomic force microscopy (AFM), and X-ray analyses. A structural model is proposed, in which the structural subunits, arranged in a side-by-side conformation, form a stacked structure.  相似文献   

15.
The regulation of the concentration of a wide range of small molecules is ubiquitous in biological systems because it enables them to adapt to the continuous changes in the environmental conditions. Herein, we report an aqueous synthetic system that provides an orchestrated, temperature and pH controlled regulation of the complexation between the cyclobis(paraquat-p-phenylene) host ( BBox ) and a 1,5-dialkyloxynaphthalene ( DNP ) guest attached to a well-defined dual responsive copolymer composed of N-isopropylacrylamide as thermoresponsive monomer and acrylic acid as pH-responsive monomer. Controlled, partial release of the BBox , enabling control over its concentration, is based on the tunable partial collapse of the copolymer. This colored supramolecular assembly is one of the first synthetic systems providing control over the concentration of a small molecule, providing great potential as both T and pH chromic materials and as a basis to develop more complex systems with molecular communication.  相似文献   

16.
Proper monomer design is the key to enhancing the strength of noncovalent interactions between the molecules toward the efficient formation of supramolecular polymers (SPs). We have designed and synthesized 1,n′-disubstituted ferrocene-azobenzene-long alkyl chains, Fc(CONH-Azo-TDP)2, to afford SPs with a high probability. The design exploits the ‘‘molecular ball-bearing’’ property of the ferrocene core, which allows two azobenzene arms to rotate in the planes of cyclopentadienyl rings, generating the most suitable molecular conformation required for SP formation. This ferrocene monomer formed a supergel consisting of SPs supported by strong intermolecular (H-bonding and π-π stacking) interactions and higher enthalpy gain than the reference molecules, where the central ferrocene core was replaced by flexible aliphatic as well as rigid benzene linkers. The molecular conformation involved in SPs, the strength of noncovalent interactions, and the process of supramolecular polymerization were investigated through NMR, UV-Vis, XRD and TEM studies. The results demonstrate that ferrocene may act as a good modulator for constructing efficient SPs.  相似文献   

17.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   

18.
Smart supramolecular vesicles constructed by host–guest interactions between “acid-degradable” acyclic cucurbit[n]uril (CB[n]) and a doxorubicin prodrug are reported. “Acid-degradable” acyclic CB[n] is a high-affinity host for several common antitumor drugs, and its degradation leads to a more dramatic decrease in binding affinity than that observed for “acid-sensitive” hosts. Supramolecular complexation between acid-degradable acyclic CB[n] and a doxorubicin prodrug resulted in the formation of negatively charged supramolecular vesicles. The prodrug strategy allowed doxorubicin to be conjugated to vesicles in a stable manner with a high drug-loading ratio of 20 %. The resulting supramolecular vesicles were responsive to tumor acidity (pH 6.5). Induced by mildly acidic conditions (pH 6.5–5.5), acid-degradable acyclic CB[n] could be degraded, and this led to a vesicle-to-micelle transition to form positively charged micelles. This transition resulted in a pH-dependent change in size and surface charge, which improved tumoral-cell uptake for doxorubicin.  相似文献   

19.
Azobenzene-containing small molecules and polymers are functional photoswitchable molecules to form supramolecular nanomaterials for various applications. Recently, supramolecular nanomaterials have received enormous attention in material science because of their simple bottom-up synthesis approach, understandable mechanisms and structural features, and batch-to-batch reproducibility. Azobenzene is a light-responsive functional moiety in the molecular design of small molecules and polymers and is used to switch the photophysical properties of supramolecular nanomaterials. Herein, we review the latest literature on supramolecular nano- and micro-materials formed from azobenzene-containing small molecules and polymers through the combinatorial effect of weak molecular interactions. Different classes including complex coacervates, host-guest systems, co-assembled, and self-assembled supramolecular materials, where azobenzene is an essential moiety in small molecules, and photophysical properties are discussed. Afterward, azobenzene-containing polymers-based supramolecular photoresponsive materials formed through the host-guest approach, polymerization-induced self-assembly, and post-polymerization assembly techniques are highlighted. In addition to this, the applications of photoswitchable supramolecular materials in pH sensing, and CO2 capture are presented. In the end, the conclusion and future perspective of azobenzene-based supramolecular materials for molecular assembly design, and applications are given.  相似文献   

20.
A novel supramolecular system, which is made up of a dibenzo[24]crown‐8 (DB24C8) ring component linked with a calix[4]arene derivative, a dumbbell component, containing a secondary ammonium center (‐NR2H2+‐) and a 4,4′‐bipyridinium (BIPY2+) unit, and stoppered with two 3,5‐di‐tert‐butylphenyl groups on the two termini of the dumbbell component, has been synthesized. The system displays a combination of two processes: the pH‐induced shuttling of a DB24C8 ring and the complexation/decomplexation of K+ ions. The switching process of this supramolecular system was investigated in detail by 1H NMR spectroscopy. The results showed that the supramolecular system can only switch smoothly in CD3CN. The two separated switchable processes can run together smoothly in this supramolecular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号