首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to exploit the applications of polypyrrole (PPy) derivatives in biosensors and bioelectronics, the different immobilization mechanisms of biomolecules onto differently functionalized conducting PPy films are investigated. Pyrrole and pyrrole derivatives with carboxyl and amino groups were copolymerized with ω‐(N‐pyrrolyl)‐octylthiol self‐assembled on Au surface by the method of the chemical polymerization to form a layer of the copolymer film, i.e., poly[pyrrole‐co‐(N‐pyrrolyl)‐caproic acid] (poly(Py‐co‐PyCA)) and poly[pyrrole‐co‐(N‐pyrrolyl)‐hexylamine] (poly(Py‐co‐PyHA)), in which the carboxyl groups in poly(Py‐co‐PyCA) were activated to the ester groups. Based on the structure characteristics, the immobilization/hybridization of DNA molecules on PPy, poly(Py‐co‐PyCA) and poly(Py‐co‐PyHA) were surveyed by cyclic voltammograms measurements. For differently functionalized copolymers, the immobilization mechanisms of DNA are various. Besides the electrochemical properties of the composite electrodes of PPy and its copolymers being detected before and after bovine serum albumin (BSA) adsorption, the kinetic process of protein binding was determined by surface plasmon resonance of spectroscopy. Since few BSA molecules could anchor onto the PPy and its copolymers surfaces, it suggests this kind of conducting polymers can be applied as the protein‐resistant material.  相似文献   

2.
Tetrabromooxomolybdate(V) was immobilized in alkylammonium cation-type polymers obtained by the reaction of poly(p-chloromethyl-styrene-co-divinylbenzene-co-styrene) (abbreviated CMS) with amines and derived from poly(p-vinylpyridine) and poly(p-vinylpyridine-co-divinylbenzene). These immobilized polymers were active catalysts for the oxidation of alcohols and epoxidation of olefins with t-butyl hydroperoxide (abbreviated t-BuOOH). Among these polymers, we could find a polymer catalyst showing specificity, which was obtained by immobilization of tetrabromooxomolybdate(V) in the polymer derived from the reaction of CMS with trimethylamine. This immobilized polymer does not catalyze epoxidation of olefins but catalyzes oxidation of alcohols with t-BuOOH. Ammonium tetrabromooxomolybdate(V) complex was stabilized by the immobilization in the polymers, and it was found that the reactivity of the active group is due to the microenvironment supplied by the polymer chain.  相似文献   

3.
1H,1H,2H,2H‐Perfluorooctyloxymethylstyrene (FS) was prepared and copolymerized with chloromethylstyrene (CMS). Conventional radical copolymerization of both these aromatic monomers led to poly(CMS‐co‐FS) random copolymers for which CMS was shown to be more reactive than the fluorinated comonomer. Their controlled radical copolymerization based on degenerative transfer, namely iodine transfer polymerization (ITP), led to various poly(CMS)‐b‐poly(FS) block copolymers. Molecular weights of poly(CMS‐co‐FS) copolymers reached 33,000 g mol?1 while those of poly(CMS)‐b‐ poly(FS) block copolymers were 22,000 g mol?1. Their composition ranged from 18 to 61 mol.% in FS. These copolymers were modified via a cationization step, aiming at replacing the chlorine atom in CMS unit by a trimethylammonium group, leading to the formation of cationic sites. The resulting functionalized copolymers exhibited different solubilities. If both copolymerization techniques led to water‐insoluble copolymers, the block architecture enabled incorporating lower FS proportion, resulting in more cationic sites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
This paper reports a novel enzyme‐immobilization method for the direct electron transfer (DET) reaction of ascorbate oxidase from Acremonium sp. HI‐25 (ASOM). ASOM was adsorbed onto a gold electrode modified with a self‐assembled monolayer (SAM) of alkanethiol derivatives and immobilized by a cationic polymer membrane and anionic ω‐carboxyalkanethiol combined system. The redox responses of the immobilized ASOM were investigated by cyclic voltammetry. We found that the DET reaction of ASOM was facilitated by this novel immobilization. On the other hand, the redox responses of poly(ethylene oxide) (PEO)‐modified ASOMs were also investigated. ASOM was modified with two types of PEO which possess straight chain‐shaped (PEO2000) or comb‐shaped conformation (PM67). As a result, the DET reactions of PEO‐modified ASOMs were also facilitated by this immobilization method. We concluded that this immobilization method is effective for promoting the DET reaction of ASOMs.  相似文献   

5.
Electrochemical preparation of poly(nickel tetrakis(N-methyl-4-pyridyl)porphyrin) tetratosylate (poly-Ni(4-TMPyP)) produces stable and electrochemically active films in strong and weak basic aqueous solutions. These films were produced on glassy carbon and gold electrodes. The electrochemical quartz crystal microbalance and cyclic voltammetry were used to study the in situ growth of poly(Ni(4-TMPyP)) films. The electrochemical properties of poly(Ni(4-TMPyP)) films indicate that the redox process was confined in to the immobilized film. The electrochemical quartz crystal microbalance results showed an ion exchange reaction for the redox couple. The polymer films showed one new redox couple when transferred to strong and weak basic aqueous solutions and the formal potential was found to be pH dependent. The electrocatalytic oxidation of H2O by a nickel tetrakis(N-methyl-4-pyridyl)porphyrin film-modified electrode was also performed. The mechanism of oxygen evolution was determined by cyclic voltammetry, chronoamperometry and rotating ring disc electrode methods. The oxygen evolution was determined by a bicatalyst system using hemoglobin, and iron tetrakis (N-methyl-2-pyridyl)porphyrin as catalyst to detect the oxygen by electrocatalytic reduction. The electrocatalytic oxidations of adenine, guanine, H2O2, N2H4, NH2OH, and l-cysteine by the film-modified electrode obtained from water-soluble nickel porphyrin were also investigated.  相似文献   

6.
The crosslinking of functionalized polystyrene resins is often of critical importance in determining resin properties and performance in the application of these materials as membranes and supports. In this investigation model systems are developed for quantifying the infrared and Raman spectroscopic properties of copolymers based on poly(styrene‐co‐divinylbenzene). Analytical curves appropriate for the quantification of para‐ and metasubstituted species and pendant double bonds are reported, and corrections to previously reported spectroscopic assignments and analytical methods are made. The usefulness of these two analytical methods in characterizing radiation‐grafted films and commercial copolymers is compared, and typical characterization results are given. The relative concentrations of the species found in the grafted films are quite different from their concentrations in the grafting solution, and empirical relationships between the two are developed. In addition, the graft composition varies as a function of the base polymer film thickness and type and the penetration depth in the grafted film. Radiation‐grafted films are more highly crosslinked in their near surface regions, and thinner films are more extensively crosslinked. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 59–75, 2004  相似文献   

7.
A three‐step process, combining nitroxide‐mediated polymerization (NMP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization techniques, for synthesizing well‐defined amphiphilic and thermosensitive graft copolymers with fluorescence poly(styrene‐co‐(p‐chloromethylstyrene))‐g‐poly(N‐isopropylacrylamide) (P(St‐co‐(p‐CMS))‐g‐PNIPAAM), was conducted. Firstly, the NMP of styrene (St) and p‐chloromethylstyrene (p‐CMS) were carried out using benzoyl peroxide (BPO) as the initiator to obtain the random copolymers of P(St‐co‐(p‐CMS)). Secondly, the random copolymers were converted into macro‐RAFT agents with fluorescent carbazole as Z‐group through a simple method. Then the macro‐RAFT agents were used in the RAFT polymerization of N‐isopropylacrylamide (NIPAAM) to prepare fluorescent amphiphilic graft copolymers P(St‐co‐(p‐CMS))‐g‐PNIPAAM with controlled molecular weights and well‐defined structures. The copolymers obtained were characterized by gel permeation chromatography (GPC), 1H nuclear magnetic resonance (NMR) spectroscopy, and FT‐IR spectroscopy. The size of self‐assembly micelles of the resulting graft copolymers in deionized water was studied by high performance particle sizer (HPPS), the results showed that the Z‐average size of the micelles increased with the increase of molecular weights of PNIPAAM in side chains. The aqueous solution of the micelles prepared from P(St‐co‐(p‐CMS))‐g‐PNIPAAM using a dialysis method showed a lower critical solution temperature (LCST) at ~ 27.5 °C, which was below the value of NIPAAM homopolymer (32 °C). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5318–5328, 2007  相似文献   

8.
Stable electroactive iron tetra(o-aminophenyl)porphyrin (FeTAPP) films are prepared by electropolymerization from aqueous solution by cycling the electrode potential between −0.4 and 1.0 V vs Ag/AgCl at 0.1 V s−1. The cyclic voltammetric response indicates that polymerization takes place after the oxidation of amino groups, and the films could be produced on glassy carbon (GC) and gold electrodes. The film growth of poly(FeTAPP) was monitored by using cyclic voltammetry and electrochemical quartz crystal microbalance. The cyclic voltammetric features of Fe(III)/Fe(II) redox couple in the film resembles that of surface confined redox species. The electrochemical response of the modified electrode was found to be dependent on the pH of the contacting solution with a negative shift of 57 mV/pH. The electrocatalytic behavior of poly(FeTAPP) film-modified electrode was investigated towards reduction of hydrogen peroxide, molecular oxygen, and chloroacetic acids (mono-, di-, and tri-). The reduction of hydrogen peroxide, molecular oxygen, and dichloroacetic acid occurred at less negative potential on poly(FeTAPP) film compared to bare GC electrode. Particularly, the overpotential of hydrogen peroxide was reduced substantially. The O2 reduction proceeds through direct four-electron reduction mechanism.  相似文献   

9.
Polymethyl(alkoxy)siloxane copolymers, poly(MTES‐co‐TEOS), and poly(MTMS‐co‐TMOS), are prepared by acid‐catalyzed controlled hydrolytic co‐polycondensation of methyl(trialkoxy)silane MeSi(OR)3 (R = Et (MTES) and Me (MTMS)) and tetra‐alkoxysilane Si(OR)4 (R = Et (TEOS) and Me (TMOS)), respectively. The products are purified by fractional precipitation to provide polymethyl(alkoxy)siloxane copolymers with molecular weight 1000–10,000 (poly(MTES‐co‐TEOS)) or 1700–100,000 (poly(MTMS‐co‐TMOS)) that are stable to self‐condensation. These polymers are soluble in common organic solvents except for hexane, and form flexible and transparent free‐standing films with a tensile strength of 4.0–10.0 MPa. The structure of the polymethyl(alkoxy)siloxane copolymers is thought to be a random or a block co‐polymer. They are found to provide coating films with an adhesive strength up to 10, a refractive index of 1.36–1.40, and a dielectric constant of 3.5–3.6. The products also show better weathering stability than polyethoxysiloxane due to the hydrolytic polycondensation of TEOS. Field emission‐scanning electron micrography analysis reveals that coating films are composed of a micro‐phase separated structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4732–4741  相似文献   

10.
This article describes the results of experiments examining the competition between the polymer diffusion rate and the crosslinking rate in low‐glass‐transition‐temperature, epoxy‐containing latex films in the presence of a diamine. We examined films formed from donor‐ and acceptor‐labeled poly(butyl acrylate‐co‐methyl methacrylate‐co‐glycidyl methacrylate) copolymer latex and studied the influence of several parameters on the growth rate of gel content and the rate of polymer diffusion. These factors include the molecular weight of the latex polymer, the presence or absence of a diamine crosslinking agent, and the cure protocol. The results were compared to the predictions of a recent theory of the competition between crosslinking and polymer diffusion across interfaces. In the initially formed films, polymer diffusion occurs more rapidly than the chemical reaction rate. Therefore, these films fall into the fast‐diffusion category of this model. In our system (unlike in the model), the latex polymer has a broad distribution of molecular weights and a distribution of diffusivities. The shortest chains contribute to the early time diffusion that we measure. At later stages of our experiment, slower diffusing species contribute to the signal that we measure. The diffusion time decreases substantially, and we observe a crossover to a regime in which the chemical reaction dominates. The increases in chain branching and gel formation bring polymer diffusion to a halt. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4098–4116, 2002  相似文献   

11.
This study explores the use of N‐substituted polypyrroles as a route for localizing DNA molecules onto conducting surfaces. N‐substituted pyrrole monomers containing N‐hydroxysuccinimidyl groups for DNA binding reactions were synthesized. These monomers were electro‐copolymerized under different conditions on platinum or gold working electrodes in a three‐electrode/single compartment cell. Subsequent DNA reactions were performed by incubating the resulting polymer conductive films with amino‐substituted DNA sequences. In addition, the electro‐copolymerization reactions of pyrrole monomers were conducted on preselected electrode positions of the Molecular Nanosystems (MNS) wafers and the formation of conductive films was demonstrated. In these experiments, it was determined also that by controlling the electro‐copolymerization reactions, the conductive films can be restricted to grow on specific locations of the MNS wafer. This was achieved by electrically passivating the chosen electrodes with self‐assembled multilayers (SAM)s of alkane thiols. Hexadecane thiol (HDT) was found the most efficient in forming SAMs and in preventing the pyrrole electropolymerization. Various analytical techniques including AFM, IR, and cyclic voltammetry (CV) were used to characterize the monomers, the electropolymerized polymers, and the attachment of amine‐terminated DNA to polypyrrole copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6014–6024, 2009  相似文献   

12.
徐颖  蒋莹  杨琳  何品刚  方禹之 《中国化学》2005,23(12):1665-1670
In this work, the application of a conducting polymer, poly(thionine), modified electrode as matrix to DNA immobilization as well as transducer to label-free DNA hybridization detection was introduced. The electropolymerization of thionine onto electrode surface was carried out by a simple two-step method, which involved a preanodization of glassy carbon electrode at a constant positive potential in thionine solution following cyclic voltammetry scans in the solution. Electrochemical detection was performed by differential pulse voltammetry in the electroactivity potential domain of poly(thionine). The resulting poly(thionine) modified electrode showed a good stability and electroactivity in aqueous media during a near neutral pH range. Additionally, the pendant amino groups on the poly(thionine) chains enabled poly(thionine) modified electrode to immobilize phosphate group terminated DNA probe via covalent linkage. Hybridization process induced a clear decrease in poly(thionine) redox current, which was corresponding to the decrease in poly(thionine) electroactivity after double stranded DNA was formed on the polymer film. The detection limit of this electrochemical DNA hybridization sensor was 1.0 × 10^-10mol/L. Compared with complementary sequence, the hybridization signal values of 1-base mismatched and 3-base mismatched samples were 63.9% and 9.2%, respectively.  相似文献   

13.
Summary: We report on various synthetic procedures for the preparation of biodegradable and biocompatible poly(lactide-co-aspartic acid) block copolymers based on natural monomeric units – lactic acid and aspartic acid. Multiblock poly(lactide-co-aspartic acid) copolymers of different comonomer composition were synthesized by heating a mixture of L-aspartic acid and L,L-lactide in melt without the addition of any catalyst or solvent and with further alkaline hydrolysis of the cyclic succinimide rings to aspartic acid units. Diblock poly(lactide-co-aspartic acid) copolymers with different block lengths were prepared by copolymerization of amino terminated poly(β-benzyl-L-aspartate) homopolymer and L,L-lactide with subsequent deprotection of the benzyl protected carboxyl group by hydrogenolysis. The differences in the structure, composition, molar mass characteristics, and water-solubility of the synthesized multiblock and diblock poly(lactide-co-aspartic acid) copolymers are discussed.  相似文献   

14.
A new monomer, 1,8-diaminocarbazole (DACz), has been synthesized as a missing link between two classes of electropolymerizable compounds – aromatic amines and carbazoles to combine some attractive features of both. Electropolymerization of DACz on Pt substrate carried out by cyclic voltammetry from acetonitrile and aqueous (neutral and acidic) solutions leads to formation of compact and very well adherent conducting films, electroactive in both media. In aqueous solutions poly(1,8-diaminocarbazole) (PDACz) exhibits a linear dependence of redox potential on pH. Morphology of the polymer films was studied by AFM using a tapping mode. Ability of amino groups of PDACz for post-functionalization was studied by covalent bonding of tyrosinase.  相似文献   

15.
The phenothiazine derivatives, Toluidine Blue O and Azur A, and the phenoxazine derivative Nile Blue were bound covalently to self-assembled cystamine monolayers chemisorbed on gold electrodes by derivatization of the surface amino groups with two different bifunctional spacers: terephthaloyl chloride and 1,6-hexamethylene-diisocyanate.The formation of the amido- and urea-derivatives of the parent compounds after covalent immobilization induces a shift of their redox potentials towards more positive values which can easily be detected by cyclic voltammetry.UV-Vis difference spectroelectrochemistry has been used to characterize the electroactive species immobilized onto transparent gold electrode surfaces in both oxidation states. In every case, the oxidized-minus-reduced (and reduced-minus-oxidized) difference spectra of the immobilized redox species show a shift of the UV maxima towards longer wavelengths and a shift of the Vis maximum towards shorter wavelengths when compared with their parent compounds. Each redox species showed different optical characteristics depending on the spacer used for immobilization.For phenothiazine derivatives immobilized with 1,6-hexamethylene di-isocyanate the total surface coverages obtained by optical methods were close to those obtained by cyclic voltammetry. However, for the same derivatives immobilized with terephthaloyl chloride, and for Nile Blue, independently of the spacer used, higher surface coverages were found by optical methods than by cyclic voltammetry.  相似文献   

16.
A bifunctional substituted dithienylcyclopentene photochromic switch bearing electropolymerisable methoxystyryl units, which enable immobilization of the photochromic unit on conducting substrates, is reported. The spectroscopic, electrochemical, and photochemical properties of a monomer in solution are compared with those of the polymer formed through oxidative electropolymerization. The electroactive polymer films prepared on gold, platinum, glassy carbon, and indium titanium oxide (ITO) electrodes were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The thickness of the films formed is found to be limited to several monolayer equivalents. The photochromic properties and stability of the polymer films have been investigated by UV/vis spectroscopy, electrochemistry, and XPS. Although the films are electrochemically and photochemically stable, their mechanical stability with respect to adhesion to the electrode was found to be sensitive to both the solvent and the electrode material employed, with more apolar solvents, glassy carbon, and ITO electrodes providing good adhesion of the polymer film. The polymer film is formed consistently as a thin film and can be switched both optically and electrochemically between the open and closed state of the photochromic dithienylethene moiety.  相似文献   

17.
A series of poly(N‐isopropylacrylamide)‐co‐poly(Nε‐benzyloxycarbonyl‐L ‐lysine) graft copolymers (PNIPAm‐co‐PZLLys) with different side chains (degree of polymerization, DP = 5~40) and unit ratios (from 30 to 70 mol %) were prepared via free radical polymerization, followed by cleaving benzyloxycarbonyl groups (Z groups) to obtain the double hydrophilic graft copolymer, poly(N‐isopropylacrylamide)‐co‐poly(L ‐lysine) (PNIPAm‐co‐PLLys). The pH‐ and temperature‐response properties of the graft copolymers in aqueous solution were studied. The experimental results indicate L15‐N30 and L15N‐70, that is, the PNIPAm‐co‐PLLys having the poly(L ‐lysine) of DP = 15 as side chains as well as 30 and 70 mol %, respectively, of PNIPAm as backbone, have coil‐to‐helix transitions from pH 6 to pH 12 at room temperature and form uniform nanoscale micelle‐like dispersions in aqueous solution at pH 12. The graft copolymers also could form uniform and nanoscale micelle‐like structures at 50 °C in pH 6 buffer solution due to slightly polymer aggregation. With temperature and pH increased, both the deprotonated PLLys side chains and PNIPAm backbone become hydrophobic, leading to polymer precipitation. These results illustrate that a double tunable hydrophilic graft copolymer had been successfully synthesized via a simple radical polymerization, and could form micelles without serious polymer aggregation at a lower pH and a higher temperature. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The copolymerization of dibenzofuran(DBF)and 3-methylthiophene(MET)was successfully achieved electrochemically by direct anodic oxidation of the monomer mixtures in boron trifluoride diethyl etherate.The effects of applied polymerization potential and the monomer concentration ratios on the copolymerization were investigated by linear sweep voltammetry and cyclic voltammetry(CV).The structure of copolymer films were investigated by UV-Vis,infrared spectroscopy,thermal analysis.As-formed novel copolymers ...  相似文献   

19.
The synthesis of a new cyclic carbonate monomer containing an allyl group was reported and its biodegradable amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐5‐methyl‐5‐allyloxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MAC)] was synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC) in the presence of poly (ethylene glycol) as a macroinitiator, with diethyl zinc as a catalyst. 13C NMR and 1H NMR were used for microstructure identification of the copolymers. The copolymer could form micelles in aqueous solution. The core of the micelles is built of the hydrophobic P(LA‐co‐MAC) chains, whereas the shell is set up by the hydrophilic PEG blocks. The micelles exhibited a homogeneous spherical morphology and unimodal size distribution. By using the cyclic carbonate monomer containing allyl side‐groups, crosslinking of the PEG‐b‐P(LA‐co‐MAC) inner core was possible. The adhesion and spreading of ECV‐304 cells on the copolymer were better than that on PLA films. Therefore, this biodegradable amphiphilic block copolymer is expected to be used as a biomaterial for drug delivery and tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5518–5528, 2007  相似文献   

20.
We present a straightforward method to prepare amphiphilic graft copolymers consisting of hydrophobic poly(3‐hydroxyalkanoates) (PHAs) backbone and hydrophilic α‐amino‐ω‐methoxy poly(oxyethylene‐co‐oxypropylene) (Jeffamine®) units. Poly(3‐hydroxyoctanoate)‐co‐(3‐hydroxyundecenoate) (PHOU) was first methanolyzed to obtain the desired molar mass. The amino end groups of Jeffamine were converted into thiol by a reaction with N‐acetylhomocysteine thiolactone and subsequently photografted. This “one‐pot” functionalization prevents from arduous and time‐consuming functionalization of the hydrophilic precursor or tedious modifications of PHAs, thus simplifying the process. The amphiphilic nature of modified PHAs leads to water‐soluble copolymers exhibiting thermoresponsive behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号