首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Carbonate MCO3 (M = Zn, Cd) can act as both Lewis acid and base to engage in a spodium bond with nitrogen-containing bases (HCN, NHCH2, and NH3) and a chalcogen bond with SeHX (X = F, Cl, OH, OCH3, NH2, and NHCH3), respectively. There is also a weak hydrogen bond in the chalcogen-bonded dyads. Both chalcogen and hydrogen bonds become stronger in the order of F > Cl > OH > OCH3 > NH2 > NHCH3. The chalcogen-bonded dyads are stabilized by a combination of electrostatic and charge transfer interactions. The interaction energy of chalcogen-bonded dyad is less than −10 kcal/mol at most cases. Furthermore, the chalcogen bond can be strengthened through coexistence with a spodium bond in N-base-MCO3-SeHX. The enhancement of chalcogen bond is primarily attributed to the charge transfer interaction. Additionally, the spodium bond is also enhanced by the chalcogen bond although the corresponding enhancing effect is small.  相似文献   

2.
The PnF2 (Pn=P,As,Sb,Bi) on a naphthalene scaffold can engage in an internal pnicogen Pn⋅⋅⋅N bond (PnB) with an NH2 group placed close to it on the adjoining ring. An approaching neutral NH3 molecule can engage in a second PnB with the central Pn, which tends to weaken the intramolecular bond. The presence of the latter in turn weakens the intermolecular PnB with respect to that formed in its absence. Replacement of the external NH3 by a CN anion causes a fundamental change in the bonding pattern, producing a fourth covalent bond with Pn, which rearranges into a trigonal bipyramidal motif. This addition disrupts the internal Pn⋅⋅⋅N pnicogen bond, recasting the PnF2⋅⋅⋅NH2 interaction into an NH⋅⋅⋅F H-bond.  相似文献   

3.
The substituent effects in aerogen bond interactions between ZO3 (Z = Kr, Xe) and different nitrogen bases are studied at the MP2/aug‐cc‐pVTZ level of theory. The nitrogen bases include the sp bases NCH, NCF, NCCl, NCBr, NCCN, NCOH, NCCH3 and the sp3 bases NH3, NH2F, NH2Cl, NH2Br, NH2CN, NH2OH, and NH2CH3. The nature of aerogen bonds in these complexes is analyzed by means of molecular electrostatic potential, electron localization function, quantum theory atoms in molecules, noncovalent interaction index, and natural bond orbital analyses. The interaction energy (Eint) ranges from ?4.59 to ?9.65 kcal/mol in the O3Z···NCX complexes and from ?5.30 to ?13.57 kcal/mol in the O3Z···NH2X ones. The dominant charge‐transfer interaction in these complexes occurs across the aerogen bond from the nitrogen lone‐pair (nN) of the Lewis base to the σ*Z‐O antibonding orbital of the ZO3. Besides, the formation of aerogen bond tends to decrease the 83Kr or 131Xe chemical shielding values in these complexes. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Ab initio calculations at the MP2/aug-cc-pVTZ level of theory are performed to examine 1:1 and 1:2 complexes of YOF2X (X = F, Cl, Br, I; Y = P, As) with ammonia. The YOF2X:NH3 complexes are formed through the interaction of the lone pair of the ammonia with the σ-hole region associated with the X or Y atom of YOF2X molecule. The calculated interaction energies of halogen-bonded complexes are between ?1.06 kcal/mol in the POF3···NH3 and ?6.21 kcal/mol in the AsOF2I···NH3 one. For a given Y atom, the largest pnicogen bond interaction energy is found for the YOF3, while the smallest for the YOF2I one. Almost a strong linear relationship is evident between the interaction energies and the magnitudes of the positive electrostatic potentials on the X and Y atoms. The results indicate that the interaction energies of halogen and pnicogen bonds in the ternary H3N:YOF2X:NH3 systems are less negative relative to the respective binary systems. The interaction energy of Y···N bond is decreased by 1–22 %, whereas that of X···N bond by about 5–61 %. That is, both Y···N and X···N interactions exhibit anticooperativity or diminutive effects in the ternary complexes.  相似文献   

5.
The T⋅⋅⋅N tetrel bond (TB) formed between TX3OH (T=C, Si, Ge; X=H, F) and the Lewis base N≡CM (M=H, Li, Na) is studied by ab initio calculations at the MP2/aug-cc-pVTZ level. Complexes involving TH3OH contain a conventional TB with interaction energy less than 10 kcal/mol. This bond is substantially strengthened, approaching 35 kcal/mol and covalent character, when fluorosubstituted TF3OH is combined with NCLi or NCNa. Along with this enhanced binding comes a near equalization of the TB T⋅⋅⋅N and the internal T−O bond lengths, and the associated structure acquires a trigonal bipyramidal shape, despite a high internal deformation energy. This structural transformation becomes more complete, and the TB is further strengthened upon adding an electron acceptor BeCl2 to the Lewis acid and a base to the NCM unit. This same TB strengthening can be accomplished also by imposition of an external electric field.  相似文献   

6.
Among the conglomeration of hydrogen bond donors, the C−H group is prevalent in chemistry and biology. In the present work, CHCl3 has been selected as the hydrogen bond donor and are X(CH3)2 are the hydrogen bond acceptors. Formation of C−H⋅⋅⋅X hydrogen bond under the matrix isolation condition is confirmed by the observation of red-shift in the C−H stretching frequency of CHCl3 and comparison with the simulated spectra. Stabilisation energy of all the three complexes is almost equal although the observed red-shift for the C−H⋅⋅⋅O complex is less compared to the C−H⋅⋅⋅S/Se complexes. The nature and origin of the hydrogen bond have been delineated using Natural Bond Orbital, Atoms in Molecules, Non-Covalent Interaction analyses, and Energy Decomposition Analysis. Charge transfer is found to be proportional to the observed red-shift. This work provides the first impression of C−H⋅⋅⋅Se hydrogen bond and its comparison with C−H⋅⋅⋅O/S hydrogen bond interaction under experimental condition.  相似文献   

7.
We analyze the interplay between pnicogen‐bonding and halogen‐bonding interactions in the XCl? FH2P? NH3 (X=F, OH, CN, NC, and FCC) complex at the MP2/aug‐cc‐pVTZ level. Synergetic effects are observed when pnicogen and halogen bonds coexist in the same complex. These effects are studied in terms of geometric and energetic features of the complexes. Natural bond orbital theory and Bader’s theory of “atoms in molecules” are used to characterize the interactions and analyze their enhancement with varying electron density at critical points and orbital interactions. The physical nature of the interactions and the mechanism of the synergetic effects are studied using symmetry‐adapted perturbation theory. By taking advantage of all the aforementioned computational methods, the present study examines how both interactions mutually influence each other.  相似文献   

8.
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3 and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2 with B(CH3)3 and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.  相似文献   

9.
Ab initio MP2/aug’-cc-pVTZ calculations have been carried out to investigate H2CO : PXH2 pnicogen-bonded complexes and HCO2H : PXH2 complexes that are stabilized by pnicogen bonds and hydrogen bonds, with X=NC, F, Cl, CN, OH, CCH, CH3, and H. The binding energies of these complexes exhibit a second-order dependence on the O−P distance. DFT-SAPT binding energies correlate linearly with MP2 binding energies. The HCO2H : PXH2 complexes are stabilized by both a pnicogen bond and a hydrogen bond, resulting in greater binding energies for the HCO2H : PXH2 complexes compared to H2CO : PXH2. Neither the O−P distance across the pnicogen bond nor the O−P distance across the hydrogen bond correlates with the binding energies of these complexes. The nonlinearity of the hydrogen bonds suggests that they are relatively weak bonds, except for complexes in which the substituent X is either CH3 or H. The pnicogen bond is the more important stabilizing interaction in the HCO2H : PXH2 complexes except when the substituent X is a more electropositive group. EOM-CCSD spin-spin coupling constants 1pJ(O−P) across pnicogen bonds in H2CO:PXH2 and HCO2H : PXH2 complexes increase as the O−P distance decreases, and exhibit a second order dependence on that distance. There is no correlation between 2hJ(O−P) and the O−P distance across the hydrogen bond in the HCO2H : PXH2 complexes. 2hJ(O−P) coupling constants for complexes with X=CH3 and H have much greater absolute values than anticipated from their O−P distances.  相似文献   

10.
Quantum chemical calculations at various levels of theory (BP86, B3LYP, MP2, CCSD(T), CBS‐QB3) of the beryllium complexes [BeCl2(NHPH3)], [BeCl2(NHPH3)2], [BeCl3(py)]?, [BeCl2(NH3)], [BeCl2(NH3)2], [BeCl3(py)]? and [BeCl3(NH3)]? as well as the boron compounds [BCl3(py)] and [BCl3(NH3)] show that BeCl2 is a very strong Lewis acid. The theoretically predicted bond dissociation energy at CBS‐QB3 of Cl2Be‐NH3 (De = 32.5 kcal/mol)is even higher than that of Cl3B‐NH3 (De = 28.6 kcal/mol). Even the second ammonia molecule in [BeCl2(NH3)2] still has a strong bond with De = 24.2 kcal/mol. The theoretically predicted bond strengths for the phosphaneimine ligands in [BeCl2(NHPH3)2] are De = 46.7 kcal/mol for the first ligand and De = 29.8 kcal/mol for the second. The anion BeCl3? is a moderately strong Lewis acid which has bond energies of De = 14.1 kcal/mol in [BeCl3(py)]? and De = 14.2 kcal/mol in [BeCl3(NH3)]?. The higher bond energy of [BeCl2(NH3)] compared with [BCl3(NH3)] comes from less deformation energy for BeCl2 than for BCl3. The intrinsic attraction between BeCl2 and NH3 calculated with frozen geometries of the complex geometry is ~5 kcal/mol less than the attraction between BCl3 and NH3. The bonding analysis with the EDA method shows that the attractive energy of the beryllium complexes comes manly from electrostatic attraction. The larger contribution of the electrostatic term is the most significant difference between the nature of the donor‐acceptor bonds of the beryllium and boron complexes.  相似文献   

11.
The reactions of hydrazoic acid (HN3) with ethene, acetylene, formaldimine (H2CNH), and HCN were explored with the high‐accuracy CBS‐QB3 method, as well as with the B3LYP and mPW1K density functionals. CBS‐QB3 predicts that the activation energies for the reactions of hydrazoic acid with ethylene, acetylene, formaldimine, and HCN have remarkably similar activation enthalpies of 19.0, 19.0, 21.6, and 25.2 kcal/mol, respectively. The reactions are calculated to have reaction enthalpies of −21.5 for triazoline formation from ethene, and −63.7 kcal/mol for formation of the aromatic triazole from acetylene. The reaction to form tetrazoline from formaldimine has a reaction enthalpy of −8 kcal/mol (ΔGrxn=+5.6 kcal/mol), and the formation of tetrazole from HCN has a reaction enthalpy of −23.0 kcal/mol. The trends in the energetics of these processes are rationalized by differences in σ‐bond energies in the transition states and adducts, and the energy required to distort hydrazoic acid to its transition‐state geometry. The density functionals predict activation enthalpies that are in relatively good agreement with CBS‐QB3, the results differing from CBS‐QB3 results by ca. 1–2 kcal/mol. Significant errors are revealed for mPW1K in predicting the reaction enthalpies for all reactions.  相似文献   

12.
The lithium‐ and hydrogen‐bonded complex of HLi? NCH? NCH is studied with ab initio calculations. The optimized structure, vibrational frequencies, and binding energy are calculated at the MP2 level with 6‐311++G(2d,2p) basis set. The interplay between lithium bonding and hydrogen bonding in the complex is investigated with these properties. The effect of lithium bonding on the properties of hydrogen bonding is larger than that of hydrogen bonding on the properties of lithium bonding. In the trimer, the binding energies are increased by about 19 % and 61 % for the lithium and hydrogen bonds, respectively. A big cooperative energy (?5.50 kcal mol?1) is observed in the complex. Both the charge transfer and induction effect due to the electrostatic interaction are responsible for the cooperativity in the trimer. The effect of HCN chain length on the lithium bonding has been considered. The natural bond orbital and atoms in molecules analyses indicate that the electrostatic force plays a main role in the lithium bonding. A many‐body interaction analysis has also been performed for HLi? (NCH)N (N=2–5) systems.  相似文献   

13.
High-level G4 calculations show that the strength of chalcogen interactions is enhanced dramatically if chalcogen compounds simultaneously form alkaline-earth bonds. This phenomenon is studied by exploring binary YX2⋅⋅⋅N-Base complexes and two types of ternary MCl2⋅⋅⋅YX2⋅⋅⋅N-Base, YX2⋅⋅⋅N-Base⋅⋅⋅MCl2 complexes, in which YX2 is a chalcogen compound (Y=S, Se; X=F, Cl), the N-Bases are sp, sp2, and sp3 bases (NCH, HN=CH2, NH3), and MCl2 are alkaline-earth BeCl2 or MgCl2 derivatives. Starting from the chalcogen-bonded complexes YX2⋅⋅⋅NH3 and YX2⋅⋅⋅HN=CH2, the binding site of a new incoming alkaline-earth bond is found, surprisingly, to depend on the nature of the halogen atom attached to the chalcogen. For the YF2 binary complexes the association site is the F atom of the YF2 subunit, whereas for YCl2 it is the N atom of the nitrogen base. Regarding YX2⋅⋅⋅NCH complexes, N is the most favorable site for an alkaline-earth interaction in ternary complexes, regardless of which YX2 derivative is used. The explanation relies on the interplay of all the noncovalent interactions involved: the strong cooperativity between chalcogen and alkaline-earth bonds, and the appearance of secondary noncovalent interactions in the form of hydrogen bonds.  相似文献   

14.
What happens when a C−H bond is forced to interact with unpaired pairs of electrons at a positively charged metal? Such interactions can be considered as “contra-electrostatic” H-bonds, which combine the familiar orbital interaction pattern characteristic for the covalent contribution to the conventional H-bonding with an unusual contra-electrostatic component. While electrostatics is strongly stabilizing component in the conventional C−H⋅⋅⋅X bonds where X is an electronegative main group element, it is destabilizing in the C−H⋅⋅⋅M contacts when M is Au(I), Ag(I), or Cu(I) of NHC−M−Cl systems. Such remarkable C−H⋅⋅⋅M interaction became experimentally accessible within (α-ICyDMe)MCl, NHC-Metal complexes embedded into cyclodextrins. Computational analysis of the model systems suggests that the overall interaction energies are relatively insensitive to moderate variations in the directionality of interaction between a C−H bond and the metal center, indicating stereoelectronic promiscuity of fully filled set of d-orbitals. A combination of experimental and computational data demonstrates that metal encapsulation inside the cyclodextrin cavity forces the C−H bond to point toward the metal, and reveals a still attractive “contra-electrostatic” H-bonding interaction.  相似文献   

15.
Crystal structures document the ability of a TF3 group (T=Si, Ge, Sn, Pb) situated on a naphthalene system to engage in an intramolecular tetrel bond (TB) with an amino group on the adjoining ring. Ab initio calculations evaluate the strength of this bond and evaluate whether it can influence the ability of the T atom to engage in a second, intermolecular TB with another nucleophile. A very strong CN anionic base can approach the T either along the extension of a T−C or T−F bond and form a strong TB with an interaction energy approaching 100 kcal/mol, although this bond is weakened a bit by the presence of the internal T⋅⋅⋅N bond. The much less potent NCH base engages in a correspondingly longer and weaker TB, less than 10 kcal/mol. Such an intermolecular TB is weakened by the presence of the internal TB, to the point that it only occurs for the two heavier tetrel atoms Sn and Pb.  相似文献   

16.
Noncovalent interactions, such as hydrogen bonds and halogen bonds, are frequently used in drug designing and crystal engineering. Recently, a novel noncovalent pnicogen bonds have been identified as an important driving force in crystal structures with similar bonding mechanisms as hydrogen bond and halogen bond. Although the pnicogen bond is highly anisotropic, the pnicogen bond angles range from 160° to 180° due to the complicated substituent effects. To understand the anisotropic characters of pnicogen bond, a modification of the polarizable ellipsoidal force field (PEff) model previously used to define halogen bonds was proposed in this work. The potential energy surfaces (PESs) of mono‐ and polysubstituted PH3–NH3 complexes were calculated at CCSD(T), MP2, and density functional theory levels and were used to examine the modified PEff model. The results indicate that the modified PEff model can precisely characterize pnicogen bond. The root mean squared error of PES obtained with PEff model is less than 0.5 kcal/mol, compared with MP2 results. In addition, the modified PEff model may be applied to other noncovalent bond interactions, which is important to understand the role of intermolecular interactions in the self‐assembly structures. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Quantum chemical calculations are applied to complexes of 6-OX-fulvene (X=H, Cl, Br, I) with ZH3/H2Y (Z=N, P, As, Sb; Y=O, S, Se, Te) to study the competition between the hydrogen bond and the halogen bond. The H-bond weakens as the base atom grows in size and the associated negative electrostatic potential on the Lewis base atom diminishes. The pattern for the halogen bonds is more complicated. In most cases, the halogen bond is stronger for the heavier halogen atom, and pnicogen electron donors are more strongly bound than chalcogen. Halogen bonds to chalcogen atoms strengthen in the order O<S<Se<Te, whereas the pattern is murkier for the pnicogen donors. In terms of competition, most halogen bonds to pnicogen donors are stronger than their H-bond analogues, but there is no clear pattern with respect to chalcogen donors. O prefers a H-bond, while halogen bonds are favored by Te. For S and Se, I-bonds are strongest, followed Br, H, and Cl-bonds in that order.  相似文献   

18.
The novel triel bonds of BX3 (X=H, F, Cl, Br, and I) and C5H5B as electron acceptors and AuR2 (R=Cl and CH3) as an electron donor were explored. The triel bond is a primary driving force for most complexes, while the contribution from a halogen-chlorine interaction in BX3−AuCl2 (X=Cl, Br, and I) and an iodine-Au interaction in BI3−Au(CH3)3 is also very important. Interestingly, the positively charged Au atom of AuCl2 can attractively bind with the holes of BX3 and C5H5B. The interaction energy lies in the range of 1 and 80 kcal/mol, in the order X=F<H<Cl<Br<I. In most cases, the triel bond of C5H5B is stronger than the triel bond of BX3. In the formation of B−Au triel bond, electrostatic energy is not dominant, while polarization energy including orbital interaction has the largest contribution for the strongly bonded complexes and dispersion energy for the weak triel bond.  相似文献   

19.
The MP2 ab initio quantum chemistry methods were utilized to study the halogen‐bond and pnicogen‐bond system formed between PH2X (X = Br, CH3, OH, CN, NO2, CF3) and BrY (Y = Br, Cl, F). Calculated results show that all substituent can form halogen‐bond complexes while part substituent can form pnicogen‐bond complexes. Traditional, chlorine‐shared and ion‐pair halogen‐bonds complexes have been found with the different substituent X and Y. The halogen‐bonds are stronger than the related pnicogen‐bonds. For halogen‐bonds, strongly electronegative substituents which are connected to the Lewis acid can strengthen the bonds and significantly influenced the structures and properties of the compounds. In contrast, the substituents which connected to the Lewis bases can produce opposite effects. The interaction energies of halogen‐bonds are 2.56 to 32.06 kcal·mol?1; The strongest halogen‐bond was found in the complex of PH2OH???BrF. The interaction energies of pnicogen‐bonds are in the range 1.20 to 2.28 kcal·mol?1; the strongest pnicogen‐bond was found in PH2Br???Br2 complex. The charge transfer of lp(P) ? σ*(Br? Y), lp(F) ? σ*(Br? P), and lp(Br) ? σ*(X? P) play important roles in the formation of the halogen‐bonds and pnicogen‐bonds, which lead to polarization of the monomers. The polarization caused by the halogen‐bond is more obvious than that by the pnicogen‐bond, resulting in that some halogen‐bonds having little covalent character. The symmetry adapted perturbation theory (SAPT) energy decomposition analysis showes that the halogen‐bond and pnicogen‐bond interactions are predominantly electrostatic and dispersion, respectively.  相似文献   

20.
MP2/aug‐cc‐pVTZ calculations are performed on complexes of YO3 (Y = S, Se) with a series of electron‐donating chalcogen bases YHX (X = H, Cl, Br, CCH, NC, OH, OCH3). These complexes are formed through the interaction of a positive electrostatic potential region (π‐hole) on the YO3 molecule with the negative region in YHX. Interaction energies of the binary O3Y???YHX complexes are in the range of ?4.37 to ?12.09 kcal/mol. The quantum theory of atoms in molecules and the natural bond orbital analysis were applied to characterize the nature of interactions. It was found that the formation and stability of these binary complexes are ruled mainly by electrostatic effects, although the electron charge transfer from YHX to YO3 unit also seems to play an important role. In addition, mutual influence between the Y???N and Y???Y interactions is studied in the ternary HCN???O3Y???YHX complexes. The results indicate that the formation of a Y???N interaction tends to weaken Y???Y bond in the ternary systems. Although the Y???Y interaction is weaker than the Y???N one, however, both types of interactions seem to compete with each other in the HCN???O3Y???YHX complexes. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号