首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Three-dimensional vertically aligned graphene (3DVAG) was prepared by a unidirectional freezing method, and its electrochemical performances were evaluated as electrode materials for zinc−ion hybrid supercapacitors (ZHSCs). The prepared 3DVAG has a vertically ordered channel structure with a diameter of about 20−30 μm and a length stretching about hundreds of microns. Compared with the random structure of reduced graphene oxide (3DrGO), the vertical structure of 3DVAG in a three−electrode system showed higher specific capacitance, faster ion diffusion, and better rate performance. The specific capacitance of 3DVAG reached 66.6 F·g−1 and the rate performance reached 92.2%. The constructed 3DVAG zinc−ion hybrid supercapacitor also showed excellent electrochemical performance. It showed good capacitance retention up to 94.6% after 3000 cycles at the current density of 2 A·g−1.  相似文献   

2.
Lithium metal anodes (LMAs) with high energy density have recently captured increasing attention for development of next-generation batteries. However, practical viability of LMAs is hindered by the uncontrolled Li dendrite growth and infinite dimension change. Even though constructing 3D conductive skeleton has been regarded as a reliable strategy to prepare stable and low volume stress LMAs, engineering the renewable and lithiophilic conductive scaffold is still a challenge. Herein, a robust conductive scaffold derived from renewable cellulose paper, which is coated with reduced graphene oxide and decorated with lithiophilic Au nanoparticles, is engineered for LMAs. The graphene cellulose fibres with high surface area can reduce the local current density, while the well-dispersed Au nanoparticles can serve as lithiophilic nanoseeds to lower the nucleation overpotential of Li plating. The coupled relationship can guarantee uniform Li nucleation and unique spherical Li growth into 3D carbon matrix. Moreover, the natural cellulose paper possesses outstanding mechanical strength to tolerate the volume stress. In virtue of the modulated deposition behaviour and near-zero volume change, the hybrid LMAs can achieve reversible Li plating/stripping even at an ultrahigh current density of 10 mA cm−2 as evidenced by high Coulombic efficiency (97.2 % after 60 cycles) and ultralong lifespan (1000 cycles) together with ultralow overpotential (25 mV). Therefore, this strategy sheds light on a scalable approach to multiscale design versatile Li host, promising highly stable Li metal batteries to be feasible and practical.  相似文献   

3.
利用水热法一步合成了不同镍、钴元素比例的镍钴铝层状氢氧化物(NiCoAl LDH),并探究了不同Ni元素含量的NiCoAl LDH的电化学性能,在Ni和Co的物质的量之比为3:7时,Ni_(0.3)CoAl LDH具有最优电化学性能。晶格中部分Ni元素被Co元素代替有利于降低氧化电势,提高材料的化学可逆性。然后通过水热法将CNT与Ni_(0.3)CoAl LDH复合,CNT的复合提高了材料的导电性。CNT/Ni_(0.3)CoAl LDH在1 A·g~(-1)的电流密度下比容量为1 332 F·g~(-1),电流密度为10 A·g~(-1)时比容量保持率为60.4%。在5A·g~(-1)的电流密度下循环3 000圈容量保持率为87.6%。  相似文献   

4.
5.
6.
7.
Pan Zhou  Dawei He 《中国化学》2016,34(8):795-800
In this study, core‐shell structured Li3V2(PO4)3/C wrapped in graphene nanosheets has been successfully prepared. The reduction of graphene oxide and the synthesis of Li3V2(PO4)3/C are carried out simultaneously using a chemical route followed by a solid‐state reaction. The effects of conducting graphene are studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra and electrochemical measurements. The results reveal that the graphene sheets not only form a compact and uniform coating layer throughout the Li3V2(PO4)3/C, but also stretch out and cross‐link into a conducting network around the Li3V2(PO4)3/C particles. Thus, the graphene decorated Li3V2(PO4)3/C electrode exhibits superior high‐rate capability and long‐cycle stability. It delivers a reversible discharge capacity of 178.2 mAh·g?1 after 60 cycles at a current density of 0.1 C, and the rate performances of 176, 169.3, 156.1 and 135.7 mAh·g?1 at 1, 2, 5 and 10 C, respectively. The superior electrochemical properties make the graphene decorated Li3V2(PO4)3/C composite a promising cathode material for high‐performance lithium‐ion battery.  相似文献   

8.
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g~(-1),3C时放电容量仍然可保持在160.5 m Ah·g~(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号