首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Porphyrinic metal-organic frameworks (MOFs) are promising photosensitizers due to the lack of self-aggregation of porphyrin in aqueous solution. However, how the topology of porphyrinic MOFs affects the generation of singlet oxygen (1O2) is unclear. Here, the effect of the topology of porphyrinic MOFs on their photodynamic performance is reported. Four porphyrinic zirconium MOFs (MOF-525, MOF-545, PCN-223 and PCN-224 with different topologies: ftw , csq , shp and she , respectively) were selected to study the influence of topology on the photodynamic antibacterial performance. The 1O2 generation and the photodynamic antibacterial performance followed an decreasing order of MOF-545>MOF-525>PCN-224>PCN-223. The results reveal that the pore size, the distance between porphyrin, and the number of porphyrin per Zr6O8 cluster in MOFs greatly affected 1O2 generation. This work provides guidance for designing new MOFs for efficient photodynamic sterilization.  相似文献   

2.
Defect engineering and metal encapsulation are considered as valuable approaches to fine-tune the reactivity of metal–organic frameworks. In this work, various MOF-808 (Zr) samples are synthesized and characterized with the final aim to understand how defects and/or platinum nanoparticle encapsulation act on the intrinsic and reactive properties of these MOFs. The reactivity of the pristine, defective and Pt encapsulated MOF-808 is quantified with water adsorption and CO2 adsorption calorimetry. The results reveal strong competitive effects between crystal morphology and missing linker defects which in turn affect the crystal morphology, porosity, stability, and reactivity. In spite of leading to a loss in porosity, the introduction of defects (missing linkers or Pt nanoparticles) is beneficial to the stability of the MOF-808 towards water and could also be advantageously used to tune adsorption properties of this MOF family.  相似文献   

3.
A few metal–organic frameworks (MOFs), which typically use strong acids as proton sources, display superprotonic conductivity (≈10−1 S cm−1); however, they are rare due to the instability of MOFs in highly acidic conditions. For the first time, we report superprotonic conductivity using a moderately acidic guest, zwitterionic sulfamic acid (HSA), which is encapsulated in MOF-808 and MIL-101. HSA acts not only as a proton source but also as a proton-conducting medium due to its extensive hydrogen bonding ability and zwitterion effect. A new sustained concentration gradient method results in higher HSA encapsulation compared to conventional methods, producing 10HSA@MOF-808-(bSA)2 and 8HSA@MIL-101. These MOFs show impressive superprotonic conductivity of 2.47×10−1 and 3.06×10−1 S cm−1, respectively, at 85 °C and 98 % relative humidity, and maintain stability for 7 days.  相似文献   

4.
A stable hierarchical porous metal–organic framework PCN-56 with abundant Lewis acid sites (denoted as Defective-PCN-56) was synthesized by the low-temperature synthesis-induced defect formation method. The existence of mesopore in structure was confirmed by N2 sorption isotherm and the successful encapsulation of large dye molecules. The Defective-PCN-56 has higher loading capacity toward anti-cancer drug Doxo compared with that of “nearly ideal-crystal” (denoted as Ideal-PCN-56) synthesized at high temperature, showing potential application as drug carrier. The low-temperature synthesis-induced defect formation strategy presented here provides a new and facile way to synthesize stable MOFs with the combination of intrinsic micropore and additional mesopore as well as abundant Lewis acid sites.  相似文献   

5.
A series of metal-organic frameworks MOF-808-X (6-connected) were synthesized by regulating the ZrOCl2·8H2O/1,3,5-benzenetricarboxylic acid (BTC) molar ratio (X) and tested for the direct synthesis of dimethyl carbonate (DMC) from CO2 and CH3OH with 1,1,1-trimethoxymethane (TMM) as a dehydrating agent. The effect of the ZrOCl2·8H2O/BTC molar ratio on the physicochemical properties and catalytic performance of MOF-808-X was investigated. Results showed that a proper ZrOCl2·8H2O/BTC molar ratio during MOF-808-X synthesis was fairly important to reduce the redundant BTC or zirconium clusters trapped in the micropores of MOF-808-X. MOF-808-4, with almost no redundant BTC or zirconium clusters trapped in the micropores, exhibited the largest surface area, micropore size, and the number of acidic-basic sites, and consequently showed the best activity among all MOF-808-X, with the highest DMC yield of 21.5% under the optimal reaction conditions. Moreover, benefiting from the larger micropore size, MOF-808-4 outperformed our previously reported UiO-66-24 (12-connected), which had even more acidic-basic sites and larger surface area than MOF-808-4, mainly because the larger micropore size of MOF-808-4 provided higher accessibility for the reactant to the active sites located in the micropores. Furthermore, a possible reaction mechanism over MOF-808-4 was proposed based on the in situ FT-IR results. The effects of different reaction parameters on DMC formation and the reusability of MOF-808-X were also studied.  相似文献   

6.
The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal–organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral −OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.  相似文献   

7.
The one-step purification of ethylene (C2H4) from mixtures containing ethane (C2H6) and acetylene (C2H2) is an industrially important yet challenging process. In this work, we present a site-engineering strategy aimed at manipulating the spatial distribution of binding sites within a confined pore space. We realized successfully by incorporating nitrogen-containing heterocycles, such as indole-5-carboxylic acid (Ind), benzimidazole-5-carboxylic acid (Bzz), and indazole-5-carboxylic acid (Izo), into the robust MOF-808 platform via post-synthetic modification. The resulting functionalized materials, namely MOF-808-Ind, MOF-808-Bzz, and MOF-808-Izo, demonstrated significantly improved selectivity for C2H2 and C2H6 over C2H4. MOF-808-Bzz with two uniformly distributed nitrogen binding sites gave the optimal geometry for selective ethane trapping through multiple strong C−H⋅⋅⋅N hydrogen bonds, leading to the highest C2H2/C2H4 and C2H6/C2H4 combined selectivities among known MOFs. Column breakthrough experiments validated its ability to purify C2H4 from ternary C2H2/C2H4/C2H6 mixtures in a single step.  相似文献   

8.
A series of Zr-based metal-organic frameworks were continuously synthesized with high quality and high productivity through microdroplet flow reaction.  相似文献   

9.
Hydrophobization of metal‐organic frameworks (MOFs) is important to push forward their practical use and thus has attracted increasing interest. In contrast to the previous reports, which mainly focused on the modification of organic ligands in MOFs, herein, we reported a novel strategy to decorate the metal‐oxo nodes of MOFs with phenylsilane to afford super‐hydrophobic NH2‐UiO‐66(Zr), which shows highly improved base resistance and holds great promise in versatile applications, such as organic/water separation, self‐cleaning, and liquid‐marble fabrication. This work demonstrates the first attempt at metal‐oxo node modification for super‐hydrophobic MOFs, advancing a new concept in the design of MOFs with controlled wettability for practical applications.  相似文献   

10.
Immobilization of porphyrin complexes into crystalline metal–organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from −0.6 V to −1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.  相似文献   

11.
Room temperature synthesis of metal-organic frameworks (MOFs) has been developed for four well-known MOFs: MOF-5, MOF-74, MOF-177, and MOF-199. A new isoreticular metal framework (IRMOF), IRMOF-0, having the same cubic topology as MOF-5, has been synthesized from acetylenedicarboxylic acid using this method to accommodate the thermal sensitivity of the linker. Despite acetylenedicarboxylate being the shortest straight linker that can be made into an IRMOF, IRMOF-0 forms as a doubly interpenetrating structure, owing to the rod-like nature of the linker.  相似文献   

12.
The structural deterioration of archetypical, well-faceted metal–organic frameworks (MOFs) has been evaluated upon exposure to an acidic environment (H2S). Experimental results show that the structural damage highly depends on the nature of the hybrid network (e.g., softness of the metal ions, hydrophilic properties, among others) and the crystallographic orientation of the exposed facets. Microscopy images show that HKUST-1 with well-defined octahedral (111) facets is completely deteriorated, ZIF-8 with preferentially exposed (110) facets exhibits a large external deterioration with the development of holes or cavities in the mesoporous range, whereas UiO-66-NH2 with (111) exposed facets, and PCN-250 with (100) facets does not reflect any sign of surface damage. Despite the selectivity in the external deterioration, X-ray diffraction and gas adsorption measurements confirm that indeed all MOFs suffer an important internal deterioration, these effects being more severe for MOFs based on softer cations (e.g., Cu-based HKUST-1 and Fe-based PCN-250). These structural changes have inevitable important effects in the final adsorption performance for CO2 and CH4 at low and high pressures.  相似文献   

13.
Through topological rationalization, a zeotype mesoporous Zr‐containing metal–organic framework (MOF), namely PCN‐777, has been designed and synthesized. PCN‐777 exhibits the largest cage size of 3.8 nm and the highest pore volume of 2.8 cm3 g?1 among reported Zr‐MOFs. Moreover, PCN‐777 shows excellent stability in aqueous environments, which makes it an ideal candidate as a support to incorporate different functional moieties. Through facile internal surface modification, the interaction between PCN‐777 and different guests can be varied to realize efficient immobilization.  相似文献   

14.
Gaseous species emitted during the zinc oxide/zinc hydroxide 1,4-benzenedicarboxylate metal organic framework synthesis (MOF-5, MOF-69c) have been used to investigate the reaction scheme that leads to the framework creation. Changes of the gas-phase composition over time indicate that the decomposition of the solvent diethylformamide occurs at least via two competing reaction pathways that can be linked to the reaction's overall water and pH management. From isotope exchange experiments, we deduce that one of the decomposition pathways leads to the removal of water from the reaction mixture, which sets the conditions when the synthesis of an oxide-based (MOF-5) instead of an hydroxide-based MOF (MOF-69c) occurs. A quantitative account of most reactants and byproducts before and after the MOF-5/MOF-69c synthesis is presented. From the investigation of the reaction intermediates and byproducts, we derive a proposal of a basic reaction scheme for the standard synthesis zinc oxide carboxylate MOFs.  相似文献   

15.
Recently, photooxygenation of amyloid β (Aβ) has emerged as an effective way to inhibit Aβ aggregation in Alzheimer's disease (AD) treatment. However, their further application has been highly obstructed by self-aggregation, no metal chelating ability, and poor protein-enrichment capacity. Herein, porphyrinic metal–organic frameworks (PMOFs) are utilized as a superior CuII chelating and photooxidation agent for inhibiting Aβ aggregation. We selected only four classical kinds of POMFs (Zr–MOF, Al–MOF, Ni–MOF, Hf–MOF) for further investigation in our study, which are stable in physiological conditions and exhibit excellent biocompatibility. Among them, Hf–MOF was the most efficient Aβ photooxidant. A possible explanation about the difference in capacity of 1O2 generation of these four PMOFs has been provided according to the experimental results and DFT calculations. Furthermore, Hf–MOFs are modified with Aβ-targeting peptide, LPFFD. This can not only enhance Hf–MOFs targeting cellular Aβ to decrease Aβ-induced cytotoxicity, but also improve Aβ photooxidation in the complicated living environment. More intriguingly, in vivo studies indicate that the well-designed LPFFD modified Hf–MOFs can decrease Aβ-induced neurotoxicity and extend the longevity of the commonly used transgenic AD model Caenorhabditis elegans CL2006. Our work may open a new avenue for using MOFs as neurotoxic-metal-chelating and photo-therapeutic agents for AD treatment.  相似文献   

16.
The Zr‐containing metal–organic frameworks (MOFs) formed by terephthalate (UiO‐66) and 2‐aminoterephthalate ligands [UiO‐66(NH2)] are two notably water‐resistant MOFs that exhibit photocatalytic activity for hydrogen generation in methanol or water/methanol upon irradiation at wavelength longer than 300 nm. The apparent quantum yield for H2 generation using monochromatic light at 370 nm in water/methanol 3:1 was of 3.5 % for UiO‐66(NH2). Laser‐flash photolysis has allowed detecting for UiO‐66 and UiO‐66(NH2) the photochemical generation of a long lived charge separated state whose decay is not complete 300 μs after the laser flash. Our finding and particularly the influence of the amino group producing a bathochromic shift in the optical spectrum without altering the photochemistry shows promises for the development of more efficient MOFs for water splitting.  相似文献   

17.
This paper reports on the comparison of three zirconium-based metal organic frameworks (MOFs) for the capture of carbon dioxide and ethanol vapour at ambient conditions. In terms of efficiency, two parameters were evaluated by experimental and modeling means, namely the nature of the ligands and the size of the cavities. We demonstrated that amongst three Zr-based MOFs, MIP-202 has the highest affinity for CO2 (−50 kJ·mol−1 at low coverage against around −20 kJ·mol−1 for MOF-801 and Muc Zr MOF), which could be related to the presence of amino functions borne by its aspartic acid ligands as well as the presence of extra-framework anions. On the other side, regardless of the ligand size, these three materials were able to adsorb similar amounts of carbon dioxide at 1 atm (between 2 and 2.5 µmol·m−2 at 298 K). These experimental findings were consistent with modeling studies, despite chemisorption effects, which could not be taken into consideration by classical Monte Carlo simulations. Ethanol adsorption confirmed these results, higher enthalpies being found at low coverage for the three materials because of stronger van der Waals interactions. Two distinct sorption processes were proposed in the case of MIP-202 to explain the shape of the enthalpic profiles.  相似文献   

18.
将高稳定性的MOF-808与BiOCl结合,采用简便的水热法制备出新型MOF-808/BiOCl复合异质结材料。以环丙沙星(CIP)为污染物,探究复合材料MOF-808/BiOCl对CIP的光催化性能。发现含有10% MOF-808的复合材料(MOF-808/BiOCl-10%)表现出最佳的光催化活性。在紫外光照射20 min内,MOF-808/BiOCl-10%对CIP的光催化降解效率高达94.7%。通过X射线粉末衍射、扫描电镜、红外光谱、荧光光谱、紫外可见漫反射光谱、光电流、电化学阻抗等表征技术来考察材料的物相组成、形貌以及光电化学性质。紫外可见漫反射光谱的结果表明,MOF-808/BiOCl-10%材料光吸收范围得到提高。同时进行了自由基捕获实验。基于以上实验数据,提出了MOF-808/BiOCl复合材料可能的光催化机理。  相似文献   

19.
The typically stable Zr‐based metal–organic frameworks (MOFs) UiO‐66 and UiO‐66‐NH2 were treated with tetrafluoromethane (CF4) and hexafluoroethane (C2F6) plasmas. Through interactions between fluoride radicals from the perfluoroalkane plasma and the zirconium–oxygen bonds of the MOF, the resulting materials showed the development of mesoporosity, creating a hierarchical pore structure. It is anticipated that this strategy can be used as a post‐synthetic technique for developing hierarchical networks in a variety of MOFs.  相似文献   

20.
Brolly good MOFs: A new series of hydrophobic isoreticular porous Zr oxide dicarboxylate MOFs have been prepared (see picture, Zr?blue polyhedra, O?red, C?black). They have a one-dimensional pore system, a rare combination of Lewis acidity and hydrophobic character, and a higher hydrothermal and mechanical stability than their UiO MOF polymorph counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号