首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
As a metal‐free nitrogen reduction reaction (NRR) photocatalyst, g‐C3N4 is available from a scalable synthesis at low cost. Importantly, it can be readily functionalized to enhance photocatalytic activities. However, the use of g‐C3N4‐based photocatalysts for the NRR has been questioned because of the elusive mechanism and the involvement of N defects. This work reports the synthesis of a g‐C3N4 photocatalyst modified with cyano groups and intercalated K+ (mCNN), possessing extended visible‐light harvesting capacity and superior photocatalytic NRR activity (NH3 yield: 3.42 mmol g?1 h?1). Experimental and theoretical studies suggest that the ‐C≡N in mCNN can be regenerated through a pathway analogous to Mars van Krevelen process with the aid of the intercalated K+. The results confirm that the regeneration of the cyano group not only enhances photocatalytic activity and sustains the catalytic cycle, but also stabilizes the photocatalyst.  相似文献   

2.
Photocatalytic water splitting to obtain hydrogen energy can transform low-density solar to high density, new and clean energy in a clean way, which is one of the ideal ways to solve the energy crisis and environmental pollution. In this paper, The CoxP/hollow porous C3N4 composite photocatalytic material was synthesized by simple methods. The photocatalytic hydrogen production rate of CoxP/hollow porous C3N4 reaches 1602 μmol g−1 h−1, which is 151 times of that of pure C3N4. The reasons for the high photocatalytic H2 evolution activity of CoxP/hollow porous C3N4 could be summarized as follows: (1) the hollow and porous structure of C3N4 shows higher light capture efficiency, larger specific surface area and more surface active sites. (2) metalloid CoxP loaded forms the Schottky contact with C3N4, which improves the photogenerated charges separation efficiency of C3N4, prolongs the photogenerated charges lifetime and improves the photocatalytic H2 evolution activity of C3N4. (3) The higher conductivity of metalloid CoxP and the lower overpotential of hydrogen production are other reasons for the higher activity of photocatalytic hydrogen production of CoxP/hollow porous C3N4. This work provides an important role for the design of efficient, stable, and efficient construction of photocatalysts for solar energy conversion.  相似文献   

3.
《化学:亚洲杂志》2017,12(3):361-365
In this work, graphitic C3N4 decorated with a CoP co‐catalyst (g‐C3N4/CoP) is reported for photocatalytic H2 evolution reaction based on two‐step hydrothermal and phosphidation method. The structure of g‐C3N4/CoP is well confirmed by XRD, FTIR, TEM, XPS, and UV/Vis diffuse reflection spectra techniques. When the weight percentage of CoP loading is 3.4 wt % (g‐C3N4/CoP‐3.4 %), the highest H2 evolution amount of 8.4×102 μmol g−1 is obtained, which is 1.1×103 times than that over pure g‐C3N4. This value also is comparable with that of g‐C3N4 loaded by the same amount of Pt. In cycling experiments, g‐C3N4/CoP‐3.4 % shows a stable photocatalytic activity. In addition, g‐C3N4/CoP‐3.4 % is an efficient photocatalyst for H2 evolution under irradiation with natural solar light. Based on comparative photoluminescence emission spectra, photoelectrochemical I –t curves, EIS Nyquist plots, and polarization curves between g‐C3N4/CoP‐3.4 % and pure g‐C3N4, it is concluded that the presence of the CoP co‐catalyst accelerates the separation and transfer of photogenerated electrons of g‐C3N4, thus resulting in improved photocatalytic activity in the H2 evolution reaction.  相似文献   

4.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   

5.
A novel graphene‐like MoS2/C3N4 (GL‐MoS2/C3N4) composite photocatalyst has been synthesized by a facile ethylene glycol (EG)‐assisted solvothermal method. The structure and morphology of this GL‐MoS2/C3N4 photocatalyst have been investigated by a wide range of characterization methods. The results showed that GL‐MoS2 was uniformly distributed on the surface of GL‐C3N4 forming a heterostructure. The obtained composite exhibited strong absorbing ability in the ultraviolet (UV) and visible regions. When irradiated with visible light, the composite photocatalyst showed high activity superior to those of the respective individual components GL‐MoS2 and GL‐C3N4 in the degradation of methyl orange. The enhanced photocatalytic activity of the composite may be attributed to the efficient separation of electron–hole pairs as a result of the matching band potentials between GL‐MoS2 and GL‐C3N4. Furthermore, a photocatalytic mechanism for the composite material has been proposed, and the photocatalytic reaction kinetics has been measured. Moreover, GL‐MoS2/C3N4 could serve as a novel sensor for trace amounts of Cu2+ since it exhibited good selectivity for Cu2+ detection in water.  相似文献   

6.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   

7.
In this study, the photocatalytic activity of graphitic carbon nitride (g‐C3N4) synthesized via different precursors (urea, thiourea, and dicyandiamide) is investigated in the degradation process of tetracycline. Owing to the efficient charge separation and transfer, prolonged radiative lifetime of charge, large surface area, and nanosheet morphology, the urea‐derived g‐C3N4 exhibits superior photocatalytic activity for tetracycline degradation under visible‐light irradiation. This performance can compare with that of most reported g‐C3N4‐based composite photocatalysts. Through the time‐circle degradation experiment, the urea‐derived g‐C3N4 is found to have an excellent photocatalytic stability. The presence of NO3?, CH3COO?, Cl? and SO42? ions with the concentration of 10 mm inhibits the photocatalytic activity of urea‐derived g‐C3N4, where this inhibitory effect is more obvious for Cl? and SO42? ions. For the coexisting Cu2+, Ca2+, and Zn2+ ions, the Cu2+ ion exhibits a significantly higher inhibitory effect than Ca2+ and Zn2+ ions for tetracycline degradation. However, both the inhibitory and facilitating effects are observed in the presence of Fe3+ ion with different concentration. The h+, .OH and .O2? radicals are confirmed as major oxidation species and a possible photocatalytic mechanism is proposed in a urea‐derived g‐C3N4 reaction system. This study is of important significance to promote the large‐scale application of g‐C3N4 photocatalysts in antibiotic wastewater purification.  相似文献   

8.
The photocatalytic activity of graphite‐like carbon nitride (g‐C3N4) could be enhanced by heterojunction strategies through increasing the charge‐separation efficiency. As a surface‐based process, the heterogeneous photocatalytic process would become more efficient if a larger contact region existed in the heterojunction interface. In this work, ultrathin g‐C3N4 nanosheets (g‐C3N4‐NS) with much larger specific surface areas are employed instead of bulk g‐C3N4 (g‐C3N4‐B) to prepare AgIO3/g‐C3N4‐NS nanocomposite photocatalysts. By taking advantage of this feature, the as‐prepared composites exhibit remarkable performances for photocatalytic wastewater treatment under visible‐light irradiation. Notably, the optimum photocatalytic activity of AgIO3/g‐C3N4‐NS composites is almost 80.59 and 55.09 times higher than that of pure g‐C3N4‐B towards the degradation of rhodamine B and methyl orange pollutants, respectively. Finally, the stability and possible photocatalytic mechanism of the AgIO3/g‐C3N4‐NS system are also investigated.  相似文献   

9.
Fe-doped sulfated titania photocatalysts were prepared by one-step thermal hydrolysis of industrial titanyl sulfate and characterized using XRD, FT-IR, UV–Vis DRS, and N2 adsorption–desorption techniques. The effects of the volume ratio of pre-adding water to TiOSO4 on the structure of the titania photocatalysts were investigated. The photocatalytic activities of Fe-doped sulfated titania samples were evaluated using the photooxidation of methylene blue in aqueous solutions under UV light irradiation. The results indicate that Fe-doping induces the red shift of the absorption edge to the visible light range. Meanwhile, sulfur species in the form of sulfate are incorporated into the network of Ti–O–Ti and coordinated to titania in bidentate models, which can effectively promote the separation of the photogenerated electrons and holes. Synergistic effects of both are beneficial for improving the photocatalytic activity of the Fe-doped sulfated titania photocatalysts.  相似文献   

10.
A novel visible‐light‐driven g‐C3N4/MIL‐53(Al) composite photocatalyst was successfully prepared using a facile stirring method at room temperature. The g‐C3N4/MIL‐53(Al) composites were characterized and their effects on the photocatalytic activities for rhodamine B degradation were investigated. The g‐C3N4(20 wt%)/MIL‐53(Al) photocatalyst displayed optimal photocatalytic degradation efficiency, which was about five times higher than the photocatalytic activity of pure g‐C3N4. The improved photocatalytic performance of the g‐C3N4/MIL‐53(Al) photocatalyst was predominantly attributed to the efficient separation of electron–hole pairs and the low charge‐transfer resistance. g‐C3N4/MIL‐53(Al) also exhibited excellent stability and reusability. A proposed mechanism for the enhanced photocatalytic activity is also discussed based on the experimental results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The graphitic carbon nitride (g-C3N4) materials with many intriguing properties have attracted much attention in photocatalysis. The photocatalytic activity of g-C3N4 is hindered by serious aggregation and limited exposed active sites. Herein is shown that nanosized g-C3N4 can be simply obtained by a superfast high-pressure homogenization approach. The high-pressure homogenization treatment can provide strong force to cut and/or to exfoliate the bulk g-C3N4 into nanosized g-C3N4 with good dispersion. Moreover, choosing different solvents during treatment can cause a different surface structure of as-prepared nanosized g-C3N4. In addition, the narrow bandgap properties, the high photogenerated charge carrier separation, and the transport abilities are achieved in as-prepared nanosized g-C3N4 because of the retaining conjugated C3N4 system. Specifically, the photocatalytic activities of as-prepared nanosized g-C3N4 have been significantly enhanced in terms of degradation of organic dye Rhodamine B (RhB) under visible light irradiation (10 times higher than that of bulk g-C3N4). These findings can provide a promising and simple approach to the exfoliation, nanonization, and surface functionalization of 2D layered materials.  相似文献   

12.
The one‐dimensional structure of catena‐poly­[[bis(2,2′‐bi­pyri­dyl‐1κ2N,N′)‐μ‐cyano‐1:2κ2N:C‐di­cyano‐2κ2C‐di­nickel(II)]‐μ‐cyano‐C:N], [Ni2(CN)4(C10H8N2)2]n, consists of infinite zigzag chains running parallel to the c axis. The chains are composed of paramagnetic [Ni(bipy)2]2+ cations (bricks; nickel on a twofold axis) linked by diamagnetic [Ni(CN)4]2? anions (mortar; nickel on an inversion center) via bridging cyano groups. The bridging cyano groups occupy cis positions in the cation and trans positions in the anion, giving rise to a new previously unknown CT‐type chain (i.e. cistrans‐type) among square tetra­cyano complexes. The coordination polyhedron of the paramagnetic Ni atom (twofold symmetry) is a slightly deformed octahedron with the two Ni—N(bipy) bonds in cis positions being somewhat longer [2.112 (3) Å] than the remaining four Ni—N bonds with a mean value of 2.065 (6) Å. The bond distances and angles in the anion have typical values.  相似文献   

13.
The Er3+:YAlO3/Fe-doped ZnO composite, a new photocatalyst which could effectively utilize visible light, was prepared. In succession, the Er3+:YAlO3/Fe-doped ZnO was characterized by XRD and SEM, respectively. Acid Red B dyes, was degraded under solar light irradiation to evaluate the photocatalytic activity of the Er3+:YAlO3/Fe-doped ZnO. In addition, the effects of Er3+:YAlO3 content, heat-treatment temperature and time on the photocatalytic activity of Er3+:YAlO3/Fe-doped ZnO were reviewed. Otherwise, the effect of initial dye concentration, Er3+:YAlO3/Fe-doped ZnO amount and solar light irradiation time on the photocatalytic degradation of Acid Red B were also investigated. It was found that the photocatalytic activity of Er3+:YAlO3/Fe-doped ZnO is much higher than that of Fe-doped ZnO and pure ZnO for the similar system. Perhaps, the use of the Er3+:YAlO3/Fe-doped ZnO may provide a new way to take advantage of ZnO in sewage treatment aspects using solar energy.  相似文献   

14.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

15.
Herein, a novel broken case‐like carbon‐doped g‐C3N4 photocatalyst was obtained via a facile one‐pot pyrolysis and cost‐effective method using glyoxal‐modified melamine as a precursor. The obtained carbon/g‐C3N4 photocatalyst showed remarkable enhanced photocatalytic activity in the degradation of gaseous benzene compared with that of pristine g‐C3N4 under visible light. The pseudo‐first‐order rate constant for gaseous benzene degradation on carbon/g‐C3N4 was 0.186 hr?1, 5.81 times as large as that of pristine g‐C3N4. Furthermore, a possible photocatalytic mechanism for the improved photocatalytic performance over carbon/g‐C3N4 nanocomposites was proposed.  相似文献   

16.
采用原位溶剂热反应制备多级 Ag/Bi/Nv-g-C3N4(氮空位-g-C3N4)/Ti3C2Tx肖特基结, 并对其物相组成和晶体结构、微观形貌和孔结构、表面元素组成和化学态、光学和光电化学性质进行了表征。由于 Ag、Bi和 Ti3C2Tx协同的表面等离激元共振效应,Ag/Bi/Nv-g-C3N4/Ti3C2Tx表现出全光谱吸收特性。由载流子浓度差驱动的界面极化电荷转移诱导形成的肖特基结, 显著提高了光生载流子(包括热电子和热空穴)的分离效率和利用率。因此, 与 Nv-g-C3N4、Ti3C2Tx、Ag/Nv-g-C3N4、Bi/Nv-g-C3N4和 Ag/Bi/Nv-g-C3N4相比, Ag/Bi/Nv-g-C3N4/Ti3C2Tx表现出显著增强的全光谱催化活性, 其在可见光和近红外光照射下光催化降解四环素的反应速率常数分别为 0.033和 0.008 6 min-1, 为对比样品的 10~2.1倍和 8.6~1.8倍。  相似文献   

17.
采用原位溶剂热反应制备多级Ag/Bi/Nv-g-C3N4(氮空位-g-C3N4)/Ti3C2Tx肖特基结,并对其物相组成和晶体结构、微观形貌和孔结构、表面元素组成和化学态、光学和光电化学性质进行了表征。由于Ag、Bi和Ti3C2Tx协同的表面等离激元共振效应,Ag/Bi/Nv-g-C3N4/Ti3C2Tx表现出全光谱吸收特性。由载流子浓度差驱动的界面极化电荷转移诱导形成的肖特基结,显著提高了光生载流子(包括热电子和热空穴)的分离效率和利用率。因此,与Nv-g-C3N4、Ti3C2Tx、Ag/Nv-g-C3N4、Bi/Nv-g-C3N4和Ag/Bi/Nv-g-C3N4相比,Ag/Bi/Nv-g-C3N4/Ti3C2Tx表现出显著增强的全光谱催化活性,其在可见光和近红外光照射下光催化降解四环素的反应速率常数分别为0.033和0.008 6 min-1,为对比样品的10~2.1倍和8.6~1.8倍。  相似文献   

18.
In this work, the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites were prepared by the sol-gel method. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). Photo-degradation of azo fuchsine (AF) as a model dye under solar light irradiation was studied to evaluate the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites. It was found that the photocatalytic activity of Co- and Fe-doped ZnO composites can be obviously enhanced by upconversion luminescence agent (Er3+: YAlO3). Besides, the photocatalytic activity of Er3+: YAlO3/Fe-doped ZnO is better than that of Er3+: YAlO3/Co-doped ZnO. The influence of experiment conditions, such as the concentration of Er3+: YAlO3, heat-treatment temperature and time on the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites was studied. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+: YAlO3/Co- and Fe-doped ZnO amount on the photocatalytic degradation of azo fuchsine in aqueous solution were investigated in detail. Simultaneously, some other organic dyes, such as Methyl Orange (MO), Rhodamine B (RM-B), Acid Red B (AR-B), Congo Red (CR), and Methyl Blue (MB) were also studied. The possible excitation principle of Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar light irradiation and the photocatalytic degradation mechanism of organic dyes were discussed.  相似文献   

19.
Acid‐treated g‐C3N4‐Cu2O was prepared by hydrothermal reduction followed by high temperature calcination and acid exfoliation. The structures and properties of as‐synthesized samples were characterized using a range of techniques, such as X‐ray photoelectron spectroscopy, scanning electron microscopy, Photoluminescence Spectroscopy and the Brunauer–Emmett–Teller (BET) theory. The photocatalytic activity was evaluated by measuring the photodegradation of methyl orange under visible‐light irradiation. Based on the results of TEM, XPS, EPR and other techniques, it was verified that a heterojunction was formed. The acid treatment process can increase the specific surface area to form abundant heterojunction interfaces as channels for photo‐generated carrier separation, thereby enhancing its light utilization and quantum efficiency. Results indicate that acid‐treated g‐C3N4‐Cu2O possesses a large specific surface area, which provides plentiful activated sites for heterojunctions to form; in addition, it showed a high visible light effect and the minimum charge‐transfer resistance. Furthermore, the g‐C3N4‐Cu2O material exhibits high levels of effectiveness and stability. Electron paramagnetic resonance and a series of radical trapping experiments demonstrate that the holes and ?O2? could be the main active species in methyl orange photodegradation. This work could provide new insights into the fabrication of composite materials as high‐performance photocatalysts, and facilitate their application in addressing environmental protection issues.  相似文献   

20.
From the 1:1 system of [Cu(dien)2](NO3)2 and K[Ag(CN)2] in water (dien is diethyl­enetri­amine, C4H13N3), the novel compound catena‐poly­[bis­[[μ‐cyano‐1:2κ2C:N‐diethyl­enetri­amine‐2κ3N‐copper(II)silver(I)]‐μ‐cyano‐1:2′κ2C:N] di­cyano­silver(I) tri­cyanodisilver(I)], [CuAg(CN)2(dien)]2[Ag(CN)2][Ag2(CN)3], has been isolated. The structure is formed from positively charged [–Cu(dien)–NC–Ag–CN–]nn+ chains and two isolated centrosymmetric [Ag(CN)2]? and [Ag2(CN)3]? anions. In the cationic chains, the Cu atoms are linked by bridging di­cyano­argentate groups, and the deformed square‐pyramidal coordination polyhedron of the CuII cation is formed from a tridentate chelate‐like bonded dien ligand and two N‐bonded bridging cyano groups. One of the bridging cyano groups occupies the apical (ap) position [mean Cu—­Neq = 2.02 (2) Å, and Cu—Nap = 2.170 (3) Å; eq is equatorial]. Short argentophilic interactions in the range 3.16–­3.30 Å are present in the crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号