首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose the novel σ–π conjugated polymer poly(biphenyl germanium) grafted with two electron‐donating acridan moieties on the Ge atom for use as the host material in a polymer light‐emitting diode (PLED) with the sky‐blue‐emitting thermally activated delayed fluorescence (TADF) material DMAC‐TRZ as the guest. Its high triplet energy (ET) of 2.86 eV is significantly higher than those of conventional π–π conjugated polymers (ET=2.65 eV as the limit) and this guest emitter (ET=2.77 eV). The TADF emitter emits bluer emission than in other host materials owing to the low orientation polarizability of the germanium‐based polymer host. The Ge atom also provides an external heavy‐atom effect, which increases the rate of reverse intersystem crossing in this TADF guest, so that more triplet excitons are harvested for light emission. The sky‐blue TADF electroluminescence with this host/guest pair gave a record‐high external quantum efficiency of 24.1 % at maximum and 22.8 % at 500 cd m?2.  相似文献   

2.
We propose the novel σ–π conjugated polymer poly(biphenyl germanium) grafted with two electron‐donating acridan moieties on the Ge atom for use as the host material in a polymer light‐emitting diode (PLED) with the sky‐blue‐emitting thermally activated delayed fluorescence (TADF) material DMAC‐TRZ as the guest. Its high triplet energy (ET) of 2.86 eV is significantly higher than those of conventional π–π conjugated polymers (ET=2.65 eV as the limit) and this guest emitter (ET=2.77 eV). The TADF emitter emits bluer emission than in other host materials owing to the low orientation polarizability of the germanium‐based polymer host. The Ge atom also provides an external heavy‐atom effect, which increases the rate of reverse intersystem crossing in this TADF guest, so that more triplet excitons are harvested for light emission. The sky‐blue TADF electroluminescence with this host/guest pair gave a record‐high external quantum efficiency of 24.1 % at maximum and 22.8 % at 500 cd m?2.  相似文献   

3.
We present a new approach to explore the potential-dependent multi-colour co-reactant electrochemiluminescence (ECL) from multiple luminophores. The potentials at both the working and counter electrodes, the current between these electrodes, and the emission over cyclic voltammetric scans were simultaneously measured for the ECL reaction of Ir(ppy)3 and either [Ru(bpy)3]2+ or [Ir(df-ppy)2(ptb)]+, with tri-n-propylamine as the co-reactant. The counter electrode potential was monitored by adding a differential electrometer module to the potentiostat. Plotting the data against the applied working electrode potential and against time provided complementary depictions of their relationships. Photographs of the ECL at the surface of the two electrodes were taken to confirm the source of the emissions. This provided a new understanding of these multifaceted ECL systems, including the nature of the counter electrode potential and the possibility of eliciting ECL at this electrode, a mechanism-based rationalisation of the interactions of different metal-complex luminophores, and a previously unknown ECL pathway for the Ir(ppy)3 complex at negative potentials that was observed even in the absence of the co-reactant.

Exploration of potential-dependent, multi-colour co-reactant electrochemiluminescence from multiple luminophores at the working and counter electrodes reveals new pathways to emission.  相似文献   

4.
In the given paper the results of investigation of nitrogen doped diamond-like carbon films (DLF) for the fabrication of electrodes of electrochemical and electrochemiluminescent (ECL) cells are presented. The surface nanomorphology of modified electrodes was studied using the atomic-force microscopy method. The mechanisms of ECL reactions with Ru(bpy) 3 1+ /Ru(bpy) 3 3+ (recombination Ru(bpy) 3 3+ /OH? (ECL without co-reactant) and Ru(bpy) 3 3+ /tripropylamine (ECL with co-reactant) were studied on DLF modified electrodes in the aqueous solution. The work shows advantages of DLF as an electrode material for further analytical applications.  相似文献   

5.
Along with the persistent research interest in organic light‐emitting diode (OLED) display and lighting technology, a new studying topic is now focused on developing thermally activated delayed fluorescence (TADF) polymer emitters, with the purpose to achieve high‐performance cost‐effective, solution‐processed OLEDs (s‐OLEDs) purely from fluorescent‐type materials. However, research in this topic is in its infancy about the designing rules of polymer structures, photophysical mechanisms and the correlated devices. In this Personal Account, mainly from our personal experience we will shortly introduce the historical developments, status and perspectives about one representative kinds of TADF polymers, i. e. the conjugated TADF polymers featuring in backbone‐donor/pendant‐acceptor (BDPA) structure scaffold, which shows very promising electroluminescent (EL) performance even using simple s‐OLED structure. Special attention is focused on illustrate the molecular designing & synthesis motivation, chemistry & device tactics towards solving the limiting factors about the quantum yields and aggregation‐quenching tendency in solid states. Further challenges and strategies towards optimizing their overall EL performance, e. g. simultaneous achieving extremely high external quantum efficiency, power efficiency and low roll‐off rate, are also discussed.  相似文献   

6.
In this work, we chose tris(2,2′-bipyridyl)ruthenium(II)hexafluorophosphate(Ru(bpy)3(PF6)2), a metal-organic complex material,to prepare nanowires, which were subsequently applied for the construction of electrochemiluminescence(ECL) biosensor by immobilizing them onto a glassy carbon electrode(GCE) with graphene-Nafion composite films. The graphene therein, being a two-dimensional carbon nanomaterial with outstanding electronic properties, can obviously improve the conductivity of the Nafion film, as well as enhance the electrochemical signal and ECL intensity of the Ru(bpy)3(PF6)2 nanowires(RuNWs) at low graphene concentration. The developed biosensor exhibited excellent ECL stability with tripropylamine(TPrA) as co-reactant. The ECL biosensor exhibited high sensitive ECL response in a wide linear range and low detection limit for the detection of proline. It is considered that the oxidation products of proline would be responsible for the ECL enhancement. The large electro-active area of the nanowires and the enhancement effect of the graphene played critical roles in the high detection performance of the ECL biosensor. The results demonstrated herein may provide a useful enlightenment for the design of more sensitive ECL biosensors.  相似文献   

7.
The traditional luminol–H2O2 electrochemiluminescence (ECL) sensing platform suffers from self-decomposition of H2O2 at room temperature, hampering its application for quantitative analysis. In this work, for the first time we employ iron single-atom catalysts (Fe-N-C SACs) as an advanced co-reactant accelerator to directly reduce the dissolved oxygen (O2) to reactive oxygen species (ROS). Owing to the unique electronic structure and catalytic activity of Fe-N-C SACs, large amounts of ROS are efficiently produced, which then react with the luminol anion radical and significantly amplify the luminol ECL emission. Under the optimum conditions, a Fe-N-C SACs–luminol ECL sensor for antioxidant capacity measurement was developed with a good linear range from 0.8 μm to 1.0 mm of Trolox.  相似文献   

8.
Bright, near-infrared electrochemiluminescence (NIR–ECL) of Au18 nanoclusters is reported herein. Spooling ECL and photoluminescence spectroscopy were used to track and link NIR emissions at 832 and 848 nm to three emissive species, Au180*, Au181+* and Au182+*, with a considerably high ECL efficiency of 5.5 relative to that of the gold standard Ru(bpy)32+/TPrA (with 5–6 % reported ECL efficiency). The unprecedentedly high efficiency is due to the overlapped oxidation potentials of Au180 and tri-n-propylamine as co-reactant, the exposed facets of Au180 gold core, and electrocatalytic loops. These discoveries will add a new member to the efficient NIR-ECL gold nanoclusters family and bring more potential applications.  相似文献   

9.
Two kinds of polystyrene-based through-space charge transfer (TSCT) polymers consisting of spatially-separated acridan donor moieties bearing phenyl or naphthyl substituents and triazine acceptor moieties are designed and synthesized. It is found that TSCT polymers containing phenyl-substituted acridan donors exhibit high-lying singlet (S1) and triplet (T1) states with small singlet-triplet energy splitting (∆EST) of 0.040.05 eV, resulting in thermally activated delayed fluorescence (TADF) with reverse intersystem crossing rate constants of 1.11.2 × 106 s−1. In contrast, polymers bearing naphthyl-substituted acridan donors, although still having TSCT emission, exhibit no TADF effect because of the large ∆EST of 0.300.33 eV induced by low-lying locally excited T1 state of naphthyl donor moiety. Solution-processed organic light-emitting diodes using TSCT polymers containing phenyl-substituted acridan donors reveal sky-blue emission at 483 nm together with maximum external quantum efficiency (EQE) of 11.3%, which is about 30 times that of naphthyl-substituted counterpart with maximum EQE of 0.38%, shedding light on the importance of high triplet energy level of donor moiety on realizing TADF effect and high device efficiency for through-space charge transfer polymer.  相似文献   

10.
Based on a “TADF + Linker” strategy (TADF=thermally activated delayed fluorescence), demonstrated here is the successful construction of conjugated polymers that allow highly efficient delayed fluorescence. Small molecular TADF blocks are linked together using a methyl-substituted phenylene linker to form polymers. With the growing number of methyl groups on the phenylene, the energy level of the local excited triplet state (3LEb) from the delocalized polymer backbone gradually increases, and finally surpasses the charge-transfer triplet state (3CT). As a result, the diminished delayed fluorescence can be recovered for the tetramethyl phenylene containing polymer, revealing a record-high external quantum efficiency (EQE) of 23.5 % (68.8 cd A−1, 60.0 lm W−1) and Commission Internationale de l′Eclairage (CIE) coordinates of (0.25, 0.52). Combined with an orange-red TADF emitter, a bright white electroluminescence is also obtained with a peak EQE of 20.9 % (61.1 cd A−1, 56.4 lm W−1) and CIE coordinates of (0.36, 0.51).  相似文献   

11.
Based on a “TADF + Linker” strategy (TADF=thermally activated delayed fluorescence), demonstrated here is the successful construction of conjugated polymers that allow highly efficient delayed fluorescence. Small molecular TADF blocks are linked together using a methyl‐substituted phenylene linker to form polymers. With the growing number of methyl groups on the phenylene, the energy level of the local excited triplet state (3LEb) from the delocalized polymer backbone gradually increases, and finally surpasses the charge‐transfer triplet state (3CT). As a result, the diminished delayed fluorescence can be recovered for the tetramethyl phenylene containing polymer, revealing a record‐high external quantum efficiency (EQE) of 23.5 % (68.8 cd A?1, 60.0 lm W?1) and Commission Internationale de l′Eclairage (CIE) coordinates of (0.25, 0.52). Combined with an orange‐red TADF emitter, a bright white electroluminescence is also obtained with a peak EQE of 20.9 % (61.1 cd A?1, 56.4 lm W?1) and CIE coordinates of (0.36, 0.51).  相似文献   

12.
Although the production of near-infrared (NIR)-absorbing organic polymers with an excellent nonlinear optical (NLO) response is vital for various optoelectronic devices and photodynamic therapy, the molecular design and relevant photophysical investigation still remain challenging. In this work, large NLO activity is observed for an NIR-absorbing bithiophene-based polymer with a unique head-to-head linkage in the NIR region. The saturable absorption coefficient and modulation depth of the polymer are determined as ∼−3.5×105 cm GW−1 and ∼32.43%, respectively. Notably, the polymer exhibits an intrinsic nonlinear refraction index up to ∼−9.36 cm2 GW−1, which is six orders of magnitude larger than that of CS2. The maximum molar-mass normalized two-photon absorption cross-section (σ2/M) of this polymer can be up to ∼14 GM at 1200 nm. Femtosecond transient absorption measurements reveal significant spectral overlap between the 2PA and excited state absorption in the 1000–1400 nm wavelength range and an efficient triplet quantum yield of ∼36.7%. The results of this study imply that this NIR-absorbing polymer is promising for relevant applications.  相似文献   

13.
Copper nanoclusters (CuNCs) are attractive electrochemiluminescence (ECL) emitters as Cu is comparatively inexpensive, nontoxic, and highly abundant. However, their ECL yield is relatively low. Herein, we report that orderly self-assembly of CuNCs using DNA nanoribbon as the template (DNR/CuNCs) conferred the CuNCs with improved ECL properties compared with individual CuNCs in both annihilation and co-reactant processes. The DNR/CuNCs resulted in a high ECL yield of 46.8 % in K2S2O8, which was ≈68 times higher than that of individual CuNCs. This strategy was successfully extended to other ECL emitters, such as gold nanoclusters and the Ru(bpy)32+/TPrA system. Furthermore, as an application of DNR/CuNCs, a DNR/CuNC-based ECL biosensor with higher sensitivity was constructed for dopamine determination (two orders of magnitude lower than that previously reported), showing that DNR/CuNCs have a potential for application in ECL bioanalysis as a new type of superior luminophore candidate.  相似文献   

14.
通过一定体积比的CdS和普鲁士蓝(PB)胶体纳米溶液的简单混合,制备了PB/CdS纳米复合物。在共反应剂存在条件下,PB纳米粒子含量较低时,在ITO电极上CdS纳晶的电致化学发光(ECL)强度可以增强3倍左右。PB纳米粒子含量较高时,CdS纳晶的ECL强度则显著降低。详细讨论了PB纳米粒子对CdS纳晶ECL影响的机理。PB纳米粒子对CdS纳晶的ECL增强可用于H2O2传感。该传感器对H2O2响应的线性范围为3.3×10-8~6.5×10-3 mol.L-1(R=0.999 2),检测限为12 nmol.L-1(S/N=3),传感器具有良好的稳定性和重现性。  相似文献   

15.
A series of novel hyperbranched polymers(HBPs) consisting of a 2,7-subsituted 9-(heptadecan-9-yl)-9H-carbazole unit(A_2+A_2') and a tetra-substituted green thermally activated delayed fluorescence(TADF) dye of 2,3,5,6-tetra(9Hcarbazol-9-yl)-4-pyridinecarbonitrile(4CzCNPy, B4) have been synthesized via Suzuki cross-coupling reaction following an "A2+A2'+B_4" method. The polymers are named according to the polymerization ratio of 4CzCNPy monomer(5 mol%, 10 mol% and 15 mol% for HBPs of P2-P4 respectively, and 0 mol% for the control linear polymer P1). Their thermal, optoelectronic and electrochemical properties have been characterized by a combination of techniques. All the polymers exhibit high thermal stability with the decomposition temperatures(Td) above 400 ℃ and glass transition temperatures(Tg) up to 98 ℃. Unfortunately, the incorporation of TADF moiety into these HBP materials induced non-TADF characteristics. However, when the HBPs functionalized as the host for our previously developed 4CzCNPy TADF dopant in solution processed devices, maximum external quantum efficiency of 5.7% and current efficiency of 17.9 cd/A have been achieved in P3-based device, which is significantly higher than those of 1.5% and 4.2 cd/A for the linear polymer P1.  相似文献   

16.
The meta junction is proposed to realize efficient thermally activated delayed fluorescence (TADF) in donor–acceptor (D-A) conjugated polymers. Based on triphenylamine as D and dicyanobenzene as A, as a proof of concept, a series of D-A conjugated polymers has been developed by changing their connection sites. When the junction between D and A is tuned from para to meta, the singlet–triplet energy splitting (ΔEST) is found to be significantly decreased from 0.44 to 0.10 eV because of the increasing hole–electron separation. Unlike the para-linked analogue with no TADF, consequently, the meta-linked polymer shows a strong delayed fluorescence. Its corresponding solution-processed organic light-emitting diodes (OLEDs) achieve a promising external quantum efficiency (EQE) of 15.4 % (51.9 cd A−1, 50.9 lm W−1) and CIE coordinates of (0.34, 0.57). The results highlight the bright future of D-A conjugated polymers used for TADF OLEDs.  相似文献   

17.
Metal organic frameworks (MOFs) have attracted extensive attention in electrochemical research fields due to their high surface area and controlled porosity. Current study is design to investigate the ECL performance of the chemically modified electrode (CME) based on the bio-MOF-1, a porous zinc-adenine framework, which loaded ruthenium complex and employed for the detection of dopamine (DA). The composite material [Ru(bpy)3]2+@bio-MOF-1 (Ru-bMOF) modified carbon glassy electrode (Ru-bMOF/GCE) exhibited an excellent ECL performance having a linear co-efficient response (R2=0.9968) for 2-(dibutyl amino) ethanol (DBAE), a classical ECL co-reactant was obtained over a concentration range of 1.0×10−9 M to 1.0×10−4 M in 0.10 M pH=6.0 phosphate buffer solution (PBS). Furthermore, DA was detected based on its inhibition effect on [Ru(bpy)3]2+/DBAE system. Compared to traditional analytical methods, this method has various advantages such as simple electrode preparation, quick response, high reproducibility (RSD<2.0 %), low limit of detection (LOD=1.0×10−10 mol/L). This chemical investigated modified electrode had exploited potential for detection of DA.  相似文献   

18.
The development of conjugated polymers especially n-type polymer semiconductors is powered by the design and synthesis of electron-deficient building blocks. Herein, a strong acceptor building block with di-metallaaromatic structure was designed and synthesized by connecting two electron-deficient metallaaromatic units through a π-conjugated bridge. Then, a double-monomer polymerization methodology was developed for inserting it into conjugated polymer scaffolds to yield metallopolymers. The isolated well-defined model oligomers indicated polymer structures. Kinetic studies based on nuclear magnetic resonance and ultraviolet–visible spectroscopies shed light on the polymerization process. Interestingly, the resulted metallopolymers with dπ–pπ conjugations are very promising electron transport layer materials which can boost photovoltaic performance of an organic solar cell, with power conversion efficiency up to 18.28 % based on the PM6 : EH-HD-4F non-fullerene system. This work not only provides a facile route to construct metallaaromatic conjugated polymers with various functional groups, but also discovers their potential applications for the first time.  相似文献   

19.
A series of new cyclometalated iridium(III) complexes for electrochemiluminescence (ECL) system were synthesized and fully characterized. Using tri-n-propylamine (TPA) as an oxidative–reductive co-reactant, their ECL properties were studied in acetonitrile (CH3CN) and mixed CH3CN/H2O (50:50, v/v) solutions, respectively. Meanwhile, the influencing factors of ECL efficiencies, including working electrode, pH, and surfactant were investigated. A remarkable ECL enhancement (up to about 13.5 times), in comparison with the commonly used Ru(bpy)32+ (2,2′-bipyridyl) ruthenium(II), is observed from Ir(FPP)2(acac) (where FPP is 2-(4-fluorophenyl)-4-phenylpyridine, acac = acetylacetone) at Pt disk electrode. At the same time, an increase in ECL efficiency is also observed in surfactant media. This study provided a new method for further improving and tuning the ECL efficiency by designing new iridium complexes with the appropriate cyclometalated or ancillary ligands.  相似文献   

20.
The meta junction is proposed to realize efficient thermally activated delayed fluorescence (TADF) in donor–acceptor (D‐A) conjugated polymers. Based on triphenylamine as D and dicyanobenzene as A, as a proof of concept, a series of D‐A conjugated polymers has been developed by changing their connection sites. When the junction between D and A is tuned from para to meta, the singlet–triplet energy splitting (ΔEST) is found to be significantly decreased from 0.44 to 0.10 eV because of the increasing hole–electron separation. Unlike the para‐linked analogue with no TADF, consequently, the meta‐linked polymer shows a strong delayed fluorescence. Its corresponding solution‐processed organic light‐emitting diodes (OLEDs) achieve a promising external quantum efficiency (EQE) of 15.4 % (51.9 cd A?1, 50.9 lm W?1) and CIE coordinates of (0.34, 0.57). The results highlight the bright future of D‐A conjugated polymers used for TADF OLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号