首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Three tetranuclear transition metal clusters based on lacunary silicotungstates [M4(H2O)2(SiW9O34)2]12? (M = Ni2+ (1), Co2+ (2)), and [Fe4(μ-O)2(μ-OH)2(SiW10O37)2]14? (3) have been synthesized under ambient conditions and characterized by elemental analyses, IR, TG, cyclic voltammetry, and single-crystal X-ray diffraction. The polyoxoanions of 1 and 2 are isostructural, including a central rhomb-like {M4O16} (M = Ni, Co) cluster sandwiched by two trivacant {B-α-SiW9} Keggin moieties. In the polyoxoanion of 3, two μ-OH and two μ-O bridges link with four FeIII ions, forming an eight-membered ring. This [Fe4(μ-OH)2(μ-O)2] aggregation is sandwiched by two bi-vacant {α-SiW10} Keggin fragments. The electrochemical properties of the three compounds were investigated.  相似文献   

2.
A novel 3‐connected SrSi2‐type 3D chiral framework constructed from hexa‐NiII‐cluster‐substituted polyoxometalate (POM) units [Ni(enMe)2]3[WO4]3[Ni6(enMe)3(OH)3PW9O34]2?9H2O ( 1 ) (enMe=1,2‐diaminopropane) has been made from a hydrothermal synthetic method. This POM represents the first 3D framework based on {Ni6PW9} units and {WO4} connectors.  相似文献   

3.
The two isomorphous title compounds, [1,5,9‐tris(2‐aminoethoxy)‐3,7,11‐trihydroxy‐3,7,11‐tribora‐1,5,9‐triborata‐2,4,6,8,10,12‐hexaoxa‐13‐oxoniatricyclo[7.3.1.05,13]tridecane]cobalt(II), [Co(C6H21B6N3O13)] or Co{B6O7(OH)3[O(CH2)2NH2]3}, and the NiII analogue, [Ni(C6H21B6N3O13)], each consist of an MII cation and an inorganic–organic hybrid {B6O7(OH)3[O(CH2)2NH2]3}2− anion. The MII cation lies on a crystallographic threefold axis (as does one O atom) and is octahedrally coordinated by three N atoms from the organic component. Three O atoms covalently link the B–O cluster and the organic component. Molecules are connected to one another through N—H...O and O—H...O hydrogen bonds, forming a three‐dimensional supramolecular network.  相似文献   

4.
The asymmetric unit of the title compound, dipotassium bis[hexaaquanickel(II)] tris(μ2‐methylenediphosphonato)tripalladium(II) hexahydrate, K2[Ni(H2O)6]2[Pd3{CH2(PO3)2}3]·6H2O, consists of half a {[Pd{CH2(PO3)2}]3}6− anion [one Pd atom (4e) and a methylene C atom (4e) occupy positions on a twofold axis] in a rare `handbell‐like' arrangement, with K+ and [Ni(H2O)6]2+ cations to form the neutral complex, completed by three solvent water molecules. The {[Pd{CH2(PO3)2}]3}6− units exhibit close Pd...Pd separations of 3.0469 (4) Å and are packed via intermolecular C—H...Pd hydrogen bonds. The [KO9] and [NiO6] units are assembled into sheets coplanar with (011) and stacked along the [100] direction. Within these sheets there are [K4Ni4O8] and [K2Ni2O4] loops. Successive alternation of the sheets and [Pd{CH2(PO3)2}]3 units parallel to [001] produces the three‐dimensional packing, which is also supported by a dense network of hydrogen bonds involving the solvent water molecules.  相似文献   

5.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

6.
The reaction of Na[CoIII(d -ebp)] (d -H4ebp = N,N′-ethylenebis[d -penicillamine]) with [(AuICl)2(dppe)] (dppe = 1,2-bis[diphenylphosphino]ethane) gave a cationic AuI4CoIII2 hexanuclear complex, [CoIII2(LAu4)]2+ ([ 1 ]2+), where [LAu4]4− is a cyclic tetragold(I) metalloligand with a 32-membered ring, [AuI4(dppe)2(d -ebp)2]4−. Complex [ 1 ]2+ crystallized with NO3 to produce a charge-separation (CS)-type ionic solid of [ 1 ](NO3)2. In [ 1 ](NO3)2, the complex cations are assembled to form cationic supramolecular hexamers of {[ 1 ]2+}6, which are closely packed in a face-centered cubic (fcc) lattice structure. The nitrate anions of [ 1 ](NO3)2 were accommodated in hydrophilic and hydrophobic tetrahedral interstices of the fcc structure to form tetrameric and hexameric nitrate clusters of {NO3}4 and {NO3}6, respectively. An analogous CS-type ionic solid formulated as [NiIICoIII(LAu4)](NO3) ([ 2 ](NO3)) was obtained when a 1:1 mixture of Na[CoIII(d -ebp)] and [NiII(d -H2ebp)] was reacted with [(AuICl)2(dppe)], accompanied by the conversion of the diamagnetic, square-planar [NiII(d -H2ebp)] to the paramagnetic, octahedral [NiII(d -ebp)]2−. While the overall fcc structure in [ 2 ](NO3) was similar to that of [ 1 ](NO3)2, none of the nitrate anions were accommodated in any hydrophobic tetrahedral interstice, reflecting the difference in the complex charges between [ 1 ]2+ and [ 2 ]+.  相似文献   

7.
The 48-FeIII-containing 96-tungsto-16-phosphate, [FeIII48(OH)76(H2O)16(HP2W12O48)8]36− ( Fe48 ), has been synthesized and structurally characterized. This polyanion comprises eight equivalent {FeIII6P2W12} units that are linked in an end-on fashion forming a macrocyclic assembly that contains more iron centers than any other polyoxometalate (POM) known to date. The novel Fe48 was synthesized by a simple one-pot reaction of an {Fe22} coordination complex with the hexalacunary {P2W12} POM precursor in water. The title polyanion was characterized by single-crystal XRD, FTIR, TGA, magnetic and electrochemical studies.  相似文献   

8.
A novel octacobalt‐containing polyoxoniobate, Na6K12[H2Co8O4(Nb6O19)4]?39 H2O, has been prepared by a combination of hydrothermal and diffusion methods. The polyanion [H2Co8O4(Nb6O19)4]18? incorporates a tetrameric assembly of Lindqvist‐type [Nb6O19]8? fragments trapping a {CoII4CoIII4} cluster which comprises a central {CoIII4O4} cubane core, surrounded by another four CoII ions linkers. Furthermore, magnetic measurements show that the compound exhibits antiferromagnetic interactions.  相似文献   

9.
A family of planar disc‐like hexa‐, octa‐ and decametallic NiII complexes exhibit dominant ferromagnetic exchange. The deca‐ and octametallic clusters [NiII10(tmp)2(N3)8(acac)6(MeOH)6] ( 1 , H3tmp=1,1,1‐tris(hydroxymethyl)propane; acac=acetylacetonate) and [NiII8(thme)2(O2CPh)4(Cl)6(MeCN)6(H2O)2] ( 2 , H3thme=1,1,1‐tris(hydroxymethyl)ethane) represent rare examples of NiII‐based single‐molecule magnets, and [NiII10] ( 1 ) possesses the largest barrier to magnetisation reversal of any NiII single‐molecule magnet to date.  相似文献   

10.
Two couples of new compounds templated by the polyanion [SiW12O40]4?,[Hbix][CuI(bix)]3[SiW12O40]·4H2O (1) and [CuII(H2O)(Hbix)2(bix)]2[CuII(H2O)2(Hbix)2(bix)][SiW12O40]3·4H2O (2) (bix = 1,4-Bis(imidazol-1-ylmethyl)benzene), [CuI(bbi)]4[SiW12O40]·2H2O (3) and [CuII(bbi2)]2[SiW12O40] (4) (bbi = 1,1′-(1,4-butanediyl)bis(imidazole)) were hydrothermally synthesized, and characterized by elemental analyses, IR spectroscopy, thermogravimetric analyses and single X-ray diffraction. Compounds 1 and 2 were synthesized from the same reactants but exhibited distinct structures which could be ascribed to the different ratios of the reactant bix to CuII. In compound 1, the higher ratio of bix results in the transformation of the CuII to CuI, the [SiW12O40]4? templates direct the CuI–bix coordination polymers to form a 3D supramolecular framework with grid-like channels along two directions. The [SiW12O40]4? templates in compound 2 locate in the voids of the 3D supramolecular network constructed by CuII–bix coordination polymers, which exhibits the interdigitation fashion in both the formation of the 2D layer and the 3D framework. Compounds 3 and 4 were synthesized similar to 1 and 2, except for the change of bix to bbi. In compound 3, the CuI–bbi polymers form a supramolecular metal–organic host framework with rhombic channels in which the SiW12 templates reside. Compound 4 shows a framework with hexagonal channels constructed by CuII–bbi coordination polymers which accommodated the SiW12 templates.  相似文献   

11.
Under hydrothermal conditions, replacement of the water molecules in the [MnIII4MnII2O4(H2O)4]8+ cluster of mixed‐valent Mn6 sandwiched silicotungstate [(B‐α‐SiW9O34)2MnIII4MnII2O4(H2O)4]12? ( 1 a ) with organic N ligands led to the isolation of five organic–inorganic hybrid, Mn6‐substituted polyoxometalates (POMs) 2 – 6 . They were all structurally characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, diffuse‐reflectance spectroscopy, and powder and single‐crystal X‐ray diffraction. Compounds 2 – 6 represent the first series of mixed‐valent {MnIII4MnII2O4(H2O)4?n(L)n} sandwiched POMs covalently functionalized by organic ligands. The preparation of 1 – 6 not only indicates that the double‐cubane {MnIII4MnII2O4(H2O)4?n(L)n} clusters are very stable fragments in both conventional aqueous solution and hydrothermal systems and that organic functionalization of the [MnIII4MnII2O4(H2O)4]8+ cluster by substitution reactions is feasible, but also demonstrates that hydrothermal environments can promote and facilitate the occurrence of this substitution reaction. This work confirms that hydrothermal synthesis is effective for making novel mixed‐valent POMs substituted with transition‐metal (TM) clusters by combining lacunary Keggin precursors with TM cations and tunable organic ligands. Furthermore, magnetic measurements reveal that 3 and 6 exhibit single‐molecule magnet behavior.  相似文献   

12.
Microwave‐assisted synthesis has been used to obtain the family of dodecanuclear NiII complexes [Ni12(NO3)(MeO)12(MeC6H4CO2)9(MeOH)10(H2O)2][ClO4]2 ( 1 ), [Ni12(NO3)(MeO)12(BrC6H4CO2)9(MeOH)10(H2O)2][ClO4]2 ( 2 ), [Ni12(CO3)(MeO)12(MeC6H4CO2)9(MeOH)10(H2O)2]2[SO4] ( 3 ) and [Ni12(NO3)(MeO)12(MeC6H4CO2)9(MeOH)8(H2O)7][NO3]2 ( 4 ). They contain three {Ni4O4} cubane units which template around a central μ6 anion, either NO3? or CO32?. Their magnetic properties have been studied by superconducting quantum interference device (SQUID) magnetometry and high‐field EPR measurements. The nanostructuration of the Ni12 species on mica surfaces is studied by AFM and grazing‐incidence X‐ray diffraction, which reveal the formation of polycrystalline thin layers.  相似文献   

13.
Two new banana-shaped tungstophosphates [M6(H2O)2(PW9O34)2(PW6O26)]17 ? (MII?=?NiII, CoII) incorporating two types of lacunary polyoxometalate units have been synthesized in aqueous solution and characterized by elemental analyses, IR, and UV spectra, and single-crystal X-ray diffraction. Structural analyses show that Na6H11[Ni6(H2O)2(PW9O34)2(PW6O26)]?·?32H2O (1) and Na7H10[Co6(H2O)2(PW9O34)2(PW6O26)]?· 31H2O (2) are generated from two tri-MII substituted B-α-[(MOH2)M2PW9O34] Keggin units connected by a hexavacant [PW6O26]11? Keggin fragment, leading to the MII-containing banana-shaped tungstophosphates. Magnetic properties of 2 show decrease of the molar magnetic susceptibility at higher temperatures results from spin-orbit coupling of CoII and antiferromagnetic interactions whereas the maximum at the lower temperatures is indicative of the ferromagnetic interactions within the trinuclear CoII spin cluster in the sandwich belt.  相似文献   

14.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

15.
16.
The characterization of the unstable NiII bis(silylamide) Ni{N(SiMe3)2}2 ( 1 ), its THF complex Ni{N(SiMe3)2}2(THF) ( 2 ), and the stable bis(pyridine) derivative trans‐Ni{N(SiMe3)2}2(py)2 ( 3 ), is described. Both 1 and 2 decompose at ca. 25 °C to a tetrameric NiI species, [Ni{N(SiMe3)2}]4 ( 4 ), also obtainable from LiN(SiMe3)2 and NiCl2(DME). Experimental and computational data indicate that the instability of 1 is likely due to ease of reduction of NiII to NiI and the stabilization of 4 through dispersion forces.  相似文献   

17.
The symmetry, structure and formation mechanism of the structurally self‐complementary { Pd84 } = [Pd84O42(PO4)42(CH3CO2)28]70− wheel is explored. Not only does the symmetry give rise to a non‐closest packed structure, the mechanism of the wheel formation is proposed to depend on the delicate balance between reaction conditions. We achieve the resolution of gigantic polyoxopalladate species through electrophoresis and size‐exclusion chromatography, the latter has been used in conjunction with electrospray mass spectrometry to probe the formation of the ring, which was found to proceed by the stepwise aggregation of {Pd6} = [Pd6O4(CH3CO2)2(PO4)3Na6−nHn] building blocks. Furthermore, the higher‐order assembly of these clusters into hollow blackberry structures of around 50 nm has been observed using dynamic and static light scattering.  相似文献   

18.
Two new compounds based on Keggin polyoxometalates (POMs) [SiW12O40]4− (SiW12), [Na(H2O)3(H2L)SiW12O40](H2L)2   6H2O (1), and [Ce(H2O)3(HL)2(H2L)]2[SiW12O40]2 10H2O (2) (HL = C6H5NO2 = isonicotinic acid), have been conventionally synthesized and characterized by routine methods. Compound 1 possesses a 1D right-handed helical structure constructed by SiW12O40 4− {SiW12} and [Na(H2O)3(HL)] complexes. Interestingly, these right-handed helical chains are linked together via H-bonds forming a novel chiral layer. By using the similar synthesis method to that for compound 1, except for employing Ce3+ cations in instead of La3+ cations, a 3D supramolecular compound 2 based on SiW12 and Ce3+ coordination cations has been obtained, which contains 1D channels along a axis. Additionally, the luminescence properties of 2 were studied. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The preparation and properties of fourteen novel paramagnetic [NiIIx] aggregates bridged by pivalate, pyrazolinolate and in most cases hydroxide are reported. A rich structural diversity has been achieved by changing the nature of the alkali of the base used during the synthesis, leading to the nuclearities [NiII4NaI4] ( 2, 3, 4 ), [NiII5NaI4] ( 5, 6, 7 ), [NiII5LiI6] ( 8 ), [NiII8MI2] (M=K ( 9, 10 ), Rb ( 11, 12 ), Cs ( 13, 14 ) and [NiII8] ( 15 ). All compounds have been characterised by single‐crystal Xray diffraction; however, full crystallographic details are given only for the representative molecules [Ni4Na4(fpo)4(piv)8(Hpiv)8] ( 2 ), [Ni5Na4(OH)2(mpo)4(piv)8(Hpiv)2(MeCN)2] ( 5 ), [Ni5Li6(OH)2(fpo)2(piv)12(Hpiv)4] ( 8 ), [Ni8K2(OH)4(ppo)4(piv)10(Hppo)2(Hpiv)2(MeCN)2] ( 9 ), [Ni8Rb2(OH)4(ppo)4(piv)10(Hppo)2(Hpiv)2(MeCN)2] ( 11 ), [Ni8Cs2(OH)4(ppo)4(piv)10(Hppo)2(Hpiv)2(MeCN)2] ( 13 ) and [Ni8(OH)4(mpo)2(PhCH2CO2)10(Hmpo)8] ( 15 ). Variable‐temperature bulk magnetisation measurements have been performed for each type of complex. The [NiII4NaI4] clusters show intramolecular antiferromagnetic coupling and a spin ground state of S=0. Complexes of the type [NiII5NaI4] also display antiferromagnetic superexchange, leading to an S=1 spin ground state. The molecule with nuclearity [NiII5LiI6], in contrast, exhibits ferromagnetic interactions, resulting in the presence of low energy states with high multiplicity, and a spin ground state S>1. The [NiII8MI2] and [NiII8] clusters have the same topology of spin carriers, which display predominantly antiferromagnetic interactions to yield a diamagnetic ground state. The coupling within these octanuclear NiII clusters is rationalised in terms of the nature of the Ni‐O‐Ni angles within the core.  相似文献   

20.
The two isomorphous title compounds, [M(C5H7N6)2(C9H6O4)2(H2O)2]·4H2O or M2+(Hdap+)2(hpt2−)2(H2O)2·4H2O {where dap is 2,6‐diaminopurine, H2hpt is homophthalic acid [2‐(2‐carboxyphenyl)acetic acid] and M is NiII or CoII}, consist of neutral M2+(Hdap+)2(hpt2−)2(H2O)2 monomers, where the MII cation lies on an inversion centre and its MN2O4 octahedral environment is defined by one N atom (from Hdap+), two O atoms (from one hpt2− dianion and one water molecule) and their inversion images. The structures are unusual in that the Hdap+ cation occurs in an uncommon protonated state (as 2,6‐diamino‐7H‐purin‐1‐ium) and both ligands bind in an unprecedented monodentate fashion. The existence of a large number of donors and acceptors for hydrogen bonding, together with π–π interactions, leads to a rather complex three‐dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号