首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine new bisdonor/bisacceptor-functionalized tetrakis(phenylethynyl)benzene (TPEB) and six new bis(dehydrobenzoannuleno)benzene (DBA) chromophores have been synthesized. The compounds consist of electron-donating dibutylaniline groups connected through a conjugated phenyl-acetylene scaffold to benzotrifluoride, bis(trifluoromethyl)phenyl, or pentafluorophenyl acceptor groups. In comparison to previously reported analogues utilizing nitrophenyl or benzonitrile acceptor groups, the weaker acceptor groups exhibit visibly fluorescent intramolecular charge transfer (ICT) behavior, moderately narrow optical band gaps, moderately high quantum yields, and strong fluorescence solvatochromism. In this series of molecules, the strongly inductive fluoro acceptor groups result in optical properties similar to the resonance acceptor analogues, making them promising candidates for optical materials device components. The data also support recent investigations that question the utility of using UV/vis spectroscopy alone as a qualitative measure of conjugation. The bisDBAs exhibit weaker ICT behavior and self-association in solution than their corresponding nitro analogues, but show greater stability to decomposition via polymerization and smaller optical band gaps than their acyclic analogues.  相似文献   

2.
The photophysical properties of two newly synthesized photoactive compounds with asymmetrical D-pi-A structure and symmetrical D-pi-A-pi-D structure are investigated in different aprotic solvents by steady-state and femtosecond fluorescence depletion measurements. It is found that the asymmetrical DA compound has larger dipole moment change than that of the symmetrical DAD compound upon excitation, where the dipole moments of the two compounds have been estimated using the Lippert-Mataga equation. Furthermore, the steady-state spectral results show that increasing solvent polarity results in small solvatochromic shift in the absorption maxima but a large red shift in the fluorescence maxima for them, indicating that the dipole moment changes mainly reflect the changes of dipole moment in excited-state rather than in ground state. The red-shifted fluorescence band is attributed to an intramolecular charge transfer (ICT) state upon photoexcitation, which could result in a strong interaction with the surrounding solvents to cause the fast solvent reorganization. The resulting ICT states of symmetrical compounds are less polar than the asymmetrical compounds, indicating the different extents of stabilization of solute-solvent interaction in the excited state. Femtosecond fluorescence depletion measurements are further employed to investigate the fast solvation effects and dynamics of the ICT state of these two novel compounds. The femtosecond fluorescence depletion results show that the DA compound has faster solvation time than that of DAD compound, which corresponds to the formation of relaxed ICT state (i.e., a final ICT state with rearranged solvent molecules after solvation) in polar solvents. It is therefore reasonably understood that the ICT compounds with asymmetrical (D-pi-A) structure have better performance for those photovoltaic devices, which strongly rely on the nature of the electron push-pull ability, compared to those symmetrical compounds (D-pi-A-pi-D).  相似文献   

3.
《中国化学快报》2021,32(11):3331-3341
Triphenylamine (TPA) derivatives and their radical cation counterparts have successfully demonstrated a great potential for applications in a wide range of fields including organic redox catalysis, organic semiconductors, magnetic materials, etc., mainly because of their excellent redox activity. The stability of TPA radical cation has significant effect on the properties of the TPA-based functional materials, especially in relation to their electronic properties. Considering the instability of parent TPA radical cation, many efforts have been devoted to the development of stable TPA radical cations and related materials. Among them, TPA radical cation-based macrocycles have attracted particular attention because their large delocalized structures can stabilize the TPA radicals, thus endow them with outstanding redox behaviors, multiple resonance structures, and wide application in various optoelectronic devices. In this review, we give a brief introduction of organic radicals and the documented stable TPA radicals. Subsequently, a number of TPA radical cation-based macrocycles are comprehensively surveyed. It is expected that this minireview will not only summarize the recent development of TPA radical cations and their macrocycles, but also shed new light on the prospect of the design of more sophisticated radical cation-based architectures and related materials.  相似文献   

4.
A concerted experi-mental (time-resolved spectroscopies) and computational (TDDFT) study of p-N,N-dimethylamino-p'-cyano-diphenylacetylene (DACN-DPA) has been carried out to probe the intramolecular charge transfer (ICT) reaction that occurs in polar solvents. The picosecond transient absorption, as well as fluorescence, in acetonitrile reveals the formation of a twisted ICT(σ*) state, which involves transfer of an electron from the 4-(dimethylamino)benzethyne moiety (DMAB) to the benzonitrile (BN) group. This ICT(σ*) state, with a large dipole moment (24.7 D) and a geometry in which the plane of electron-accepting BN group is perpendicular to the plane electron-donating DMAB moiety and the angles of C(DMAB)C≡C is 135.0°, is responsible for the greatly Stokes-shifted (~8000 cm(-1)) fluorescence and the transient absorption bands (with peaks at about 630 and 425 nm), which decays with the same lifetime (~780 ps). It is proposed that the 630 nm picosecond transient absorption of the ICT state represents the absorption spectrum of dimethylaminobenzethyne radical cation and the 425 nm transient represents the absorption spectrum of benzonitrile radical anion. In nonpolar n-hexane, most of the fluorescence as well as the major component of the transient absorption originate from the S(1) (ππ*) state.  相似文献   

5.
金属有机骨架(MOFs)材料因其可设计的结构以及灵活可控的配位模式,在三阶非线性光学(NLO)领域引起了广泛的关注。与液体分散状态相比,MOFs在固体状态下的三阶NLO性能更为重要,这不仅可以深入了解MOFs本身所固有的光学性能,还有助于实现MOFs在光学器件中的实际应用。然而,由于散射的存在和透光率的限制,单独的MOFs材料难以直接实现固体状态下的三阶NLO性能研究,将MOFs制备成具有较好光学透过性的薄膜是研究其NLO性能最为可行的一种策略。MOFs薄膜不仅很好地继承了MOFs所固有的三阶NLO性能,而且还结合了薄膜的高透光率以及灵活的机械性能。基于此,本文分析总结了MOFs薄膜的制备方法及其NLO性能研究方面的相关工作,并根据目前MOFs薄膜在三阶NLO性能方面的研究现状对其未来发展予以了展望。  相似文献   

6.
金属有机骨架(MOFs)材料因其可设计的结构以及灵活可控的配位模式,在三阶非线性光学(NLO)领域引起了广泛的关注。与液体分散状态相比,MOFs在固体状态下的三阶NLO性能更为重要,这不仅可以深入了解MOFs本身所固有的光学性能,还有助于实现MOFs在光学器件中的实际应用。然而,由于散射的存在和透光率的限制,单独的MOFs材料难以直接实现固体状态下的三阶NLO性能研究,将MOFs制备成具有较好光学透过性的薄膜是研究其NLO性能最为可行的一种策略。MOFs薄膜不仅很好地继承了MOFs所固有的三阶NLO性能,而且还结合了薄膜的高透光率以及灵活的机械性能。基于此,本文分析总结了MOFs薄膜的制备方法及其NLO性能研究方面的相关工作,并根据目前MOFs薄膜在三阶NLO性能方面的研究现状对其未来发展予以了展望。  相似文献   

7.
《Tetrahedron》2019,75(25):3504-3509
Stimuli responsive luminescent materials have attracted increasing attention for their potential application in many fields. In this work, dimethylamine substituted bisbenzocoumarins amides (DBCE and DBCP) are synthesized and their optical properties are investigated. These molecules show solvatochromic properties. The orange fluorescence emission of DBCE in crystalline state is blue-shifted to yellow emission upon grinding. The orange color could be recovered by recrystallization process. Powder wide-angle X-ray diffraction and DSC experiments reveal that the transformation from crystalline states to amorphous states under external stimuli is responsible for the mechanochromic properties. This work developed a new kind of binaphthane-type luminescent materials with blue-shifted mechanochromic properties.  相似文献   

8.
Due to their unique physicochemical properties, the anion radical and dianion of perylene diimide derivatives(PDIs) recently attracted significant attention for organic semiconductors. However, the impact of packing structure and the radical content for carrier transport in the solid state still need to be determined. Bringing the electron-withdrawing groups is an effective strategy for enabling π-π stacking distance. Here, bay-tetrachloro-substituted PDI(B-4Cl-PDI) anion radical and dianion films were fabricated quantitatively doped with N2H4·H2O. The radical contents were quantitatively calculated by absorption spectra in different doping ratios. The X-ray powder diffraction patterns showed that the anion radical presented a crystalline structure, and dianion aggregates exhibited an amorphous structure. With precise manipulation of the radical content, the anion radical aggregates and dianion aggregates showed the maximum electrical conductivity value of 0.024 and 0.0018 S/cm, respectively. The experiment results show that doping level and aggregate structure play a crucial role in electronic transport properties.  相似文献   

9.
本文回顾了在羰基引发剂的作用下烯烃单体光引发聚合的最新机理。报道了有关多种当前通用的新型羰基引发剂的光物理和光化学的近期工作,其中包括 UV 吸收,发光光谱和闪光光解的研究。还报道了油溶性引发剂对丙烯酸丁酯的光聚合效应。证明油溶性引发剂实质上是经过三重态来起作用,其中包含一个从溶剂中攫取氢的引发步骤。对于硫杂蒽酮衍生物来说,它们从叔胺接受电子的能力及其光聚合效应之间有一定的关系。从闪光光解获得的证据说明在这种情况下存在着自由基阴离子,但是基于二苯酮和苯基酮的引发剂则没有。预料后者直接从胺攫氢是通过三重态羰基或是引发剂的自由基。有证据表明联苯甲酰主要是通过光裂解来起作用。水溶性硫杂蒽酮引发剂的作用主要是经过单重态,其中包含引发时攫氢一步。在这种情况下,自由基的形成不受氧的影响。  相似文献   

10.
Synthesis and characterization of new carbazolyl derivatives with a pendant stable radical of the TTM (tris-2,4,6-trichlorophenylmethyl radical) series are reported. The EPR spectra, electrochemical properties, absorption spectra, and luminescent properties of these radical adducts have been studied. All of them show electrochemical amphotericity being reduced and oxidized to their corresponding stable charged species. The luminescence properties of them cover the red spectral band of the emission. The luminescence of the electron-rich carbazole adducts shows the donor-acceptor nature of the excited state. On the other hand, the EPR parameters of these radical adducts show an imperceptible variation with the substituents in the carbazole.  相似文献   

11.
Two new polychlorotriphenylmethyl (PTM) derivatives bearing a thioacetate and a disulfide group have been synthesized to anchor on gold substrate. On the basis of these molecules, three strategies were followed to prepare self-assembled monolayers (SAMs) of electroactive PTMs. The resulting SAMs were fully characterized by contact angle, atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The high coverage surface and stability of the SAMs were demonstrated by cyclic voltammetry. In addition, the electrochemical experiments proved that these SAMs are bistable since it is possible to reversibly switch between the PTM radical state to the corresponding anion. The magnetic response was investigated by electron paramagnetic resonance. We observed that when the PTM SAMs are in their radical form they confer magnetic functionality to the surface, whereas when they are in the anionic state, the surface is diamagnetic. Thus, the PTM-modified substrates are multifunctional surfaces since they combine magnetic and electroactive properties. The reported results show the high potential of these materials for the fabrication of surface molecular devices.  相似文献   

12.
π‐Conjugated oligomers and polymers consisting of bifuran units are applied in optoelectronic devices, because bifuran units endow such devices with superior properties compared with their thiophene analogs. However, as is true for most furan oligomers, bifuran oligomers suffer from low photostability, which restricts their application. In this work, we present the synthesis and the photophysical and structural characterization of perfluorinated phenyl bifuran ( PFB‐2F ), which displays high photostability, while maintaining strong fluorescence quantum efficiency in both solution and the solid state. X‐Ray crystallography reveals that, unlike its thiophene analog, PFB‐2F has a completely planar backbone, with slip‐stacked packing and short interplanar distances. PFB‐2F crystals display mechanofluorochromic behavior, which renders perfluorophenyl‐substituted oligofurans potential candidates for both stable optoelectronic devices and responsive optical materials.  相似文献   

13.
Based on the first principles calculation, the effects of vacancies on the structural, electronic and optical properties of ZnO/MoS2 heterostructure are investigated in this work. The results show that vacancies could exist stably in the heterojunctions and cause a significant decrease in bandgap. ZnO/MoS2 with an O vacancy maintains semiconductor property with a bandgap of 0.119 eV, while heterostructure with a Zn vacancy exhibits metallic characteristic. Furthermore, the absorption capability of defective heterojunctions has been extended to infrared light region with obvious redshift. To sum up, vacancy engineering effectively changes the electronic and optical properties of ZnO/MoS2 heterostructure, which provides a feasible approach for adjusting the optoelectronic properties of two-dimensional heterostructures and broadening their application in functional nanoelectronic and optoelectronic devices.  相似文献   

14.
The electronic structure and optical properties of charged oligofluorenes were studied experimentally and theoretically. Measurements of the optical absorption spectra of charged oligofluorenes in dilute solutions have been performed by using the pulse radiolysis technique. In addition, optical absorption spectra of radical cations and anions in a solid matrix were measured after gamma-irradiation at 77 K. The optical absorption spectra were measured in the range of 440-2100 nm (0.6-2.8 eV) and compared with results from time-dependent density functional theory (TDDFT) calculations. The calculated charge induced deformations and charge distribution do not indicate the occurrence of polaronic effects. The potential energy profiles for rotation around the inter-unit bond show that oligofluorenes are nonplanar in their neutral state, while they tend to more planar structures in their charged state. The optical absorption spectra of charged oligofluorenes are dependent on the angle between neighboring units. TDDFT absorption energies shift to lower values with increasing chain length, which suggests that the charge delocalizes along the oligomer chain.  相似文献   

15.
A series of star-shaped molecules with benzene core and naphthalimides derivatives end groups have been designed to explore their optical,electronic,and charge transport properties as charge transport and/or luminescent materials for organic light-emitting diodes(OLEDs). The frontier molecular orbitals(FMOs) analysis has turned out that the vertical electronic transitions of absorption and emission are characterized as intramolecular charge transfer(ICT). The calculated results show that the optical and electronic properties of star-shaped molecules are affected by the substituent groups in N-position of 1,8-naphthalimide ring. Our results suggest that star-shaped molecules with n-butyl(1),benzene(2),thiophene(3),thiophene S?,S?-dioxide(4),benzo[c][1,2,5]thiadiazole(5),and 2,7a-dihydrobenzo[d]thiazole(6) fragments are expected to be promising candidates for luminescent and electron transport materials for OLEDs. This study should be helpful in further theoretical investigations on such kind of systems and also to the experimental study for charge transport and/or luminescent materials for OLEDs.  相似文献   

16.
Three (donor–π–acceptor)+ systems with a methyl pyridinium or quinolinium as the electron‐deficient group, a dimethyl amino as the electron‐donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD‐DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited‐state optimized geometries (planar in low‐polarity media and twisted in high‐polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials.  相似文献   

17.
Strongly emissive solid‐state materials are mandatory components for many emerging optoelectronic technologies, but fluorescence is often quenched in the solid state owing to strong intermolecular interactions. The design of new organic pigments, which retain their optical properties despite their high tendency to crystallize, could overcome such limitations. Herein, we show a new material with monomer‐like absorption and emission profiles as well as fluorescence quantum yields over 90 % in its crystalline solid state. The material was synthesized by attaching two bulky tris(4‐tert‐butylphenyl)phenoxy substituents at the perylene bisimide bay positions. These substituents direct a packing arrangement with full enwrapping of the chromophore and unidirectional chromophore alignment within the crystal lattice to afford optical properties that resemble those of their natural pigment counterparts, in which chromophores are rigidly embedded in protein environments.  相似文献   

18.
Efficient monomer and excimer emission from various donor-acceptor substituted phenylethynes (PE), which are known as efficient electrogenerated chemiluminescent molecules, was observed with time-resolved fluorescence measurement during the pulse radiolysis in benzene. On the basis of the transient absorption and emission measurements, and steady-state measurements, the formation of PE in the singlet excited state (1PE*) and the excimer (1PE2*) can be interpreted by the charge recombination between the PE radical cation (PE.+) and the PE radical anion (PE.-) which are generated initially from the radiolytic reaction in benzene. It is suggested that the positive and negative charges are localized on the donor and acceptor moieties in the radical cation and anion, respectively. This mechanism is reasonably explained by the relationship between the annihilation enthalpy changes (-DeltaH' degrees ) and singlet excitation energies of donor-substituted phenyl(9-acridinyl)ethynes (1(a-e)). In addition to the monomer emission, the compounds bearing weak donors (1(a-d)) show the excimer emission due to a very small twist angle between the donor and acceptor moieties. For the phenyl(9-cyano-10-anthracenyl)ethynes (2(c) and 2(f)), although they also show the monomer and excimer emissions, it cannot be explained by the relationship between -DeltaH' degrees values and their singlet excitation energies, suggesting the formation of the ICT state and H-type excimer in which two 9-cyano-10-anthracenyl moieties are stacked face-to-face with donor bearing a benzene ring projecting perpendicularly away from each other through the charge recombination between 2.+) and 2.-) and/or triplet-triplet annihilation.  相似文献   

19.
The structure-property characteristics of a series of newly synthesized intramolecular charge-transfer (ICT) compounds, single-branch monomer with triphenylmethane as electron donor and 2,1,3-benzothiadiazole as acceptor, the corresponding two-branch dimer and three-branch trimer, have been investigated by means of steady-state and femtosecond time-resolved stimulated emission fluorescence depletion (FS TR-SEP FD) techniques in different polar solvents. The TD-DFT calculations are further performed to explain the observed ICT properties. The interpretation of the experimental results is based on the comparative stud-ies of the series of compounds which have increased amount of identical branch moiety. The similarity of the absorption and fluorescence spectra as well as strong solvent-dependence of the spectral properties for the three compounds reveal that the excited state of the dimer and trimer are nearly the same with that of the monomer, which may localize on one branch. It is found that polar excited state emerged through multidimensional intramolecular charge transfer from the donating moiety to the acceptor upon excitation, and quickly relaxed to one branch before emission. Even so, the red-shift in the absorption and emission spectra and decreased fluorescence radiative lifetime with respect to their monomer counterpart still suggest some extent delocalization of excited state in the dimer and trimer upon excitation. The similar behavior of their excited ICT state is demonstrated by FS TR-SEP FD mea-surements, and shows that the trimer has the largest charge-separate extent in all studied three samples. Finally, steady-state excitation anisotropy measurements has further been carried out to estimate the nature of the optical excitation and the mechanism of energy redistribution among the branches, where no plateau through the ICT band suggests the intramolecular excitation transfer process between the branches in dimer and trimer.  相似文献   

20.
The conditions of electrochemical formation of nickel hydride are investigated. The electrochemical properties of different nickel-based materials (bulk, porous, foamed tapes) are examined to state the hydrogen adsorption/absorption phenomena and possibility to use them as a negative electrode in hydrogen devices (electrolyzers, rechargeable batteries, fuel cells). Surface activation of nickel materials are made by electroplating and etching methods. Thin palladium coating is used to prove the formation of nickel hydride during cathodic charging. Volt-amperometric and kinetic measurements show that not only palladium, but also activated nickel plays important role in the surface activation of electrode materials and promotion of hydrogen absorption in nickel substrate materials. Published in Russian in Elektrokhimiya, 2007, vol. 43, No. 5, pp. 624–629. Based on the paper delivered at the 8th Meeting “Fundamental Problems of Solid-State Ionics, Chernogolovka (Russia), 2006. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号