共查询到20条相似文献,搜索用时 0 毫秒
1.
Guanjia Zhu Prof. Wan Jiang Prof. Jianping Yang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(7):1488-1496
The successful commercialization of promising silicon-based anode materials has been hampered by their poor cycling stability caused by the huge volume change. Integration of the carbon matrix with silicon-based (C/Si-based) anode materials has been demonstrated to be a powerful solution to achieve satisfactory electrochemical performance. This minireview aims to outline recent developments on C/Si-based composites, with the emphasis on the importance of carbon distribution at multiple scales. In addition, the forms of the carbon framework (carbon sources and doping of heteroatoms) have been summarized. Particularly, a novel C/Si-based hybrid with carbon distributed at the atomic scale has been highlighted. 相似文献
2.
Transition-metal phosphides have been regarded as promising anode materials for high-energy lithium-ion batteries (LIBs) due to their high capacity and low cost. However, the mechanical pulverization and resultant capacity fade critically limit their further development. Here, we have designed an innovative core-shell CoP@NC@TiO2 composite with an exotic rhombic dodecahedral morphology derived from ZIF-67 precursor, which combines both advantages from TiO2 with excellent cycling stability and CoP with high capacity. The additional MOF-derived N-doped carbon framework is considered to improve the electrical conductivity and accommodate the volume expansion of CoP particles. Moreover, the outer TiO2 shell can also buffer the mechanical stress and maintain the integrity of composite. With the unique structure, the core-shell CoP@NC@TiO2 composite material exhibits excellent electrochemical performance with a considerable discharge specific capacity of 706.3 mAh g−1 at a current density of 100 mA g−1 after 200 cycles and outstanding rate capacity. Hence, our work demonstrates that this core-shell structure strategy combined with MOF-derived carbon framework could provide a practical pathway towards enhanced electrode materials for energy storage and conversion. 相似文献
3.
锂离子电池硅基负极粘结剂发展现状 总被引:2,自引:0,他引:2
在锂离子电池负极材料的研究中,硅材料以其高达4200 mAh·g-1的理论比容量,成为近年来新能源电池领域的研究热点.但是在锂化/去锂化过程中,硅负极体积变化高达300%,导致快速的容量衰减和较短的循环寿命.目前硅负极改性最有效的方法之一,是通过粘结剂来保持活性物质、导电添加剂和集流体间的接触完整性,减少硅材料在充放电循环过程中体积变化引起的裂化和粉碎,保持硅负极的高容量,提升电池循环性能.基于硅材料作为锂离子电池负极的优异特性,以及目前锂离子电池粘结剂的发展,将针对锂离子电池硅基负极粘结剂做出系统讨论,描述不同粘结剂对电池性能的主要影响,为锂离子电池硅基负极粘结剂的开发和应用提供研究方向. 相似文献
4.
Mesoporous Amorphous Silicon: A Simple Synthesis of a High‐Rate and Long‐Life Anode Material for Lithium‐Ion Batteries 下载免费PDF全文
Liangdong Lin Xuena Xu Chenxiao Chu Muhammad K. Majeed Prof. Jian Yang 《Angewandte Chemie (International ed. in English)》2016,55(45):14063-14066
Amorphous Si (a‐Si) shows potential advantages over crystalline Si (c‐Si) in lithium‐ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a‐Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a‐Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g?1 at 3 A g?1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a‐Si and c‐Si anodes clearly supports the advantages of a‐Si in lithium‐ion batteries. 相似文献
5.
6.
Silicon‐based composites have been recognized as a promising anode material for high‐energy lithium‐ion batteries (LIBs). However, the intrinsically low conductivity and the huge volume expansion during lithiation/delithiation progresses impede its further practical applications. In the past decades, numerous efforts have been made for surface and interface modification of Si‐based anodes. Among these, doping of active materials with heteroatoms is one promising method to endow silicon many unmatched electrochemical properties. In this review, we focus on the effects of heteroatom doping on the interfacial properties of Si‐based anodes, and some typical strategies for the interface doping are highlighted. We aim to give some reference for interfacial doping of Si‐based anodes in LIBs. 相似文献
7.
Thermally stable, flexible polymer gel electrolytes with high ionic conductivity are prepared by mixing the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (C4mpyrTFSI), LiTFSI and poly(vinylidene difluoride-co-hexafluoropropylene (PVDF-HFP). FT-IR and Raman spectroscopy show that an amorphous film is obtained for high (60 %) C4mpyrTFSI contents. Thermogravimetric analysis (TGA) confirms that the polymer gels are stable below ∼300 °C in both nitrogen and air environments. Ionic conductivity of 1.9×10−3 S cm−2 at room temperature is achieved for the 60 % ionic liquid loaded gel. Germanium (Ge) anodes maintain a coulombic efficiency above 95 % after 90 cycles in potential cycling tests with the 60 % C4mpyrTFSI polymer gel. 相似文献
8.
Porous carbonaceous anode materials have received considerable attention as an alternative anode material, however, there is a critical bottleneck as it suffers from a large irreversible specific capacity loss over several initial cycles owing to undesired surface reactions. In order to suppress undesired surface reactions of porous carbonaceous anode material, here, we suggest a simple and convenient two-step surface modification approach that allows the embedding of an amide functional group on the surface of a porous carbonaceous anode, which effectively improves the surface stability. In this approach, the porous carbonaceous anode material is firstly activated by means of strong acid treatment comprising a combination of H2SO4 and HNO3, and it is subjected to further modification by means of an amide coupling reaction. Our additional systematic analyses confirm that the acid functional group effectively transforms into the amide functional group. The resulting amide-functionalized porous carbon exhibits an improved electrochemical performance: the initial discharge specific capacity is greatly reduced to less than 2,620 mA h g−1 and charge specific capacity is well still remained, indicating stabling cycling performance of the cell. 相似文献
9.
Min Jiang Junliang Chen Dr. Yuanyuan Ma Prof. Wei Luo Prof. Jianping Yang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(36):9320-9327
Recently, the frequency of combining MXene, which has unique properties such as metal-level conductivity and large specific surface area, with silicon to achieve excellent electrochemical performance has increased considerably. There is no doubt that the introduction of MXene can improve the conductivity of silicon and the cycling stability of electrodes after elaborate structure design. However, most exhaustive contacts can only improve the electrode conductivity on the plane. Herein, a MXene@Si/CNTs (HIEN-MSC) composite with hierarchical interpenetrating electroconductive networks has been synthesized by electrostatic self-assembly. In this process, the CNTs are first combined with silicon nanoparticles and then assembled with MXene nanosheets. Inserting CNTs into silicon nanoparticles can not only reduce the latter‘s agglomeration, but also immobilizes them on the three-dimensional conductive framework composed of CNTs and MXene nanosheets. Therefore, the HIEN-MSC electrode shows superior rate performance (high reversible capacity of 280 mA h−1 even tested at 10 A g−1), cycling stability (stable reversible capacity of 547 mA h g−1 after 200 cycles at 1 A g−1) and applicability (a high reversible capacity of 101 mA h g−1 after 50 cycles when assembled with NCM622 into a full cell). These results may provide new insights for other electrodes with excellent rate performance and long-cycle stability. 相似文献
10.
Sujong Chae Seong‐Hyeon Choi Namhyung Kim Jaekyung Sung Jaephil Cho 《Angewandte Chemie (International ed. in English)》2020,59(1):110-135
Silicon is considered a most promising anode material for overcoming the theoretical capacity limit of carbonaceous anodes. The use of nanomethods has led to significant progress being made with Si anodes to address the severe volume change during (de)lithiation. However, less progress has been made in the practical application of Si anodes in commercial lithium‐ion batteries (LIBs). The drastic increase in the energy demands of diverse industries has led to the co‐utilization of Si and graphite resurfacing as a commercially viable method for realizing high energy. Herein, we highlight the necessity for the co‐utilization of graphite and Si for commercialization and discuss the development of graphite/Si anodes. Representative Si anodes used in graphite‐blended electrodes are covered and a variety of strategies for building graphite/Si composites are organized according to their synthetic methods. The criteria for the co‐utilization of graphite and Si are systematically presented. Finally, we provide suggestions for the commercialization of graphite/Si combinations. 相似文献
11.
Jinfu Zhao Dr. Wenxian Wei Dr. Na Xu Dr. Xiaotong Wang Prof. Limin Chang Dr. Li Wang Luan Fang Dr. Zaiyuan Le Dr. Ping Nie 《Chemphyschem》2022,23(9):e202200233
The front cover artwork is provided by Dr. Ping Nie and Prof. Limin Chang at Jilin Normal University. The image shows one-dimensional silicon–nitrogen-doped carbon nanotube composite fabricated through a dealloying process. The nanotube engineered silicon coupled with conductive carbon coating synergistically boosts the electrochemical performance. Read the full text of the Research Article at 10.1002/cphc.202100832 . 相似文献
12.
13.
锂离子电池锡基合金体系负极研究 总被引:1,自引:0,他引:1
综述了锂离子电池锡基金属间化合物和复合物负极的研究进展。介绍了锡基合金体系作锂离子电池负极的优势, 指出了锡金属负极的不足,提出了采用锡基合金及其复合物是克服锡金属负极主体材料尺寸稳定问题的解决办法。概述了各种锡基合金和其复合物的结构、电化学性能、相应的加工方法和某些反应机理,总结了这些材料的优点和缺点,提出了改进这些材料性能的一些建议,如采用分散形态的纳米颗粒结构或用非晶合金并控制形态结构的转变,着重指出多相锡基锂合金复合物是最有前景的负极材料。 相似文献
14.
A significant increase in energy density of lithium ion batteries (LIBs) can be achieved by using high‐capacity, silicon (Si)‐based negative electrode materials. Several challenges arise from the enormous volumetric changes of Si during lithiation/delithiation, such as disintegration/pulverization of the active material and the electrode as well as ongoing electrolyte decomposition, leading to rapid capacity fading. Here, we synthesize and comparatively investigate three different porous transition metal‐Si‐carbon composite materials that are composed of an active Si phase and the corresponding inactive metal‐silicide phases. In this material design, the inactive phases, as well as the pores serve as a buffer to attenuate the previously mentioned detrimental effects. The synthesized materials are studied with respect to their structural and surface properties and are characterized electrochemically regarding their rate performance, and long‐term charge/discharge cycling stability. Thereby, the composite materials show a promising rate capability and a high specific capacity. Their low initial Coulombic efficiency, due to the porous structure, can be partially compensated by pre‐lithiation. This is demonstrated by the application of the synthesized materials in a LIB full‐cell set‐up vs. NMC‐111 cathodes, where the amount of lithium is confined due to anode/cathode capacity balancing. 相似文献
15.
Porous Si-Cu3Si-Cu Microsphere@C Core–Shell Composites with Enhanced Electrochemical Lithium Storage
Shien Pei Jianfeng Guo Zhishun He Liang-ai Huang Tongzhou Lu Junjie Gong Prof. Haibo Shao Prof. Jianming Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(27):6006-6016
Low-cost Si-based anode materials with excellent electrochemical lithium storage present attractive prospects for lithium-ion batteries (LIBs). Herein, porous Si-Cu3Si-Cu microsphere@C composites are designed and prepared by means of an etching/electroless deposition and subsequent carbon coating. The composites show a core–shell structure, with a porous Si/Cu microsphere core surrounded by the N-doped carbon shell. The Cu and Cu3Si nanoparticles are embedded inside porous silicon microspheres, forming the porous Si/Cu microsphere core. The microstructure and lithium storage performance of porous Si-Cu3Si-Cu microsphere@C composites can be effectively tuned by changing electroless deposition time. The Si-Cu3Si-Cu microsphere@C composite prepared with 12 min electroless deposition delivers a reversible capacity of 627 mAh g−1 after 200 cycles at 2 A g−1, showing an enhanced lithium storage ability. The superior lithium storage performance of the Si-Cu3Si-Cu microsphere@C composite can be ascribed to the improved electronic conductivity, enhanced mechanical stability, and better buffering against the large volume change in the repeated lithiation/delithiation processes. 相似文献
16.
Rechargeable magnesium ion batteries (MIBs) have attracted increasing interest due to abundant reserves, high theoretical specific capacities and safety. However, the incompatibility between Mg metal and conventional electrolytes, among the most serious challenges, restrains their development. Replacing Mg metal with alloy-type anodes offers an effective strategy to circumvent the surface passivation issue of Mg metal in conventional electrolytes. Among them, Bi has the most potential in Mg storage owing to its unique characteristics. Herein, the advantages/challenges and progress of Bi-based anodes in MIBs are summarized. The theoretical evaluations, battery configurations, electrode designs, electrochemical properties as well as Mg storage mechanisms are summarized and discussed. Moreover, the key issues and some views on the future development of Bi-based anodes in MIBs are provided. 相似文献
17.
18.
Qi Zhang Jingyi Luan Prof. Yougen Tang Prof. Xiaobo Ji Prof. Haiyan Wang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(32):13280-13291
Aqueous zinc-ion batteries have rapidly developed recently as promising energy storage devices in large-scale energy storage systems owing to their low cost and high safety. Research on suppressing zinc dendrite growth has meanwhile attracted widespread attention to improve the lifespan and reversibility of batteries. Herein, design methods for dendrite-free zinc anodes and their internal mechanisms are reviewed from the perspective of optimizing the host–zinc interface and the zinc–electrolyte interface. Furthermore, a design strategy is proposed to homogenize zinc deposition by regulating the interfacial electric field and ion distribution during zinc nucleation and growth. This Minireview can offer potential directions for the rational design of dendrite-free zinc anodes employed in aqueous zinc-ion batteries. 相似文献
19.
20.
A New Anode for Lithium‐Ion Batteries Based on Single‐Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design 下载免费PDF全文
Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite‐based anodes in lithium‐ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp2‐carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high‐performance carbon‐based anode materials. Herein, we employed flexible single‐walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip‐coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron‐/ion‐transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium‐ion batteries, the SWCNT‐GF electrode delivered a specific capacity of 953 mA h g?1 at a current density of 0.1 A g?1 and a high reversible capacity of 606 mA h g?1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g?1 and 189 mA h g?1 after 2200 cycles at 5 A g?1. 相似文献