首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A combined experimental and theoretical approach has been used to investigate X⋅⋅⋅CH2O (X=F, Cl, Br, I) complexes in the gas phase. Photoelectron spectroscopy, in tandem with time-of-flight mass spectrometry, has been used to determine electron binding energies for the Cl⋅⋅⋅CH2O, Br⋅⋅⋅CH2O, and I⋅⋅⋅CH2O species. Additionally, high-level CCSD(T) calculations found a C2v minimum for these three anion complexes, with predicted electron detachment energies in excellent agreement with the experimental photoelectron spectra. F⋅⋅⋅CH2O was also studied theoretically, with a Cs hydrogen-bonded complex found to be the global minimum. Calculations extended to neutral X⋅⋅⋅CH2O complexes, with the results of potential interest to atmospheric CH2O chemistry.  相似文献   

2.
Investigations of the fragmentation processes of acetaldehyde were performed by photoionization mass spectrometry of its deuterium labeled species CH3CDO and CD3CHO. Intramolecular exchange of hydrogen atoms (hydrogen scrambling) was observed. Obviously this process is accompanied by predissociation of the parent ion. Results are compared with previous work on acetaldehyde CH3CHO.  相似文献   

3.
CNDO/Force calculations have been done for formaldehyde, acetaldehyde and acetone, and the theoretical force fields evaluated. Experimental force fields are obtained from vibrational frequencies using the least-squares refinement method. The initial force fields considered are based on the bending and interaction force constants obtained from the CNDO/Force calculations and the stretching force constants transferred from chemically related molecules. Vibrational frequencies of H2CO, D2CO, HDCO, H213CO and D213CO for formaldehyde, CH3CHO, CH3CDO, CD3CHO, CD3CDO and CH2DCHO for acetaldehyde, and CH3COCH3 CD3COCH3 and CD3COCD3 for acetone are employed in the force field refinements. The final force fields obtained are found to be reasonable with respect to the diagonal and interaction force constants.  相似文献   

4.
Infrared spectra in the gas phase are reported over the range 3100-500 cm−1 for species of B(OMe)3, ClB(OMe)2 and Cl2BOMe, with CH3, CD3 and CHD2 substitution. A detailed analysis of νCH and νCD data in all three species of Cl2BOMe yields strong evidence for the presence of three kinds of CH bond, two of them weak and one of them strong. The methyl group is then twisted, probably through 10–20°, out of the eclipsed or staggered conformation. The CHD2 spectra of the di and trimethoxy compounds are less susceptible to analysis, but suggest also the presence of two weak and strong bonds, the former increasing in weakness as the number of methoxy groups increases. This is as expected from the increased competition likely between the lone pair electrons for the empty boron orbital. The spectra of the CD3 species permit a clear assignment of νBO, δsCH3, δsCD3 and δasCD3 modes. In Cl(COCH3)2, νsBO lies at 1278 cm−1.  相似文献   

5.
The bimolecular reaction of the CH2CHOH.+ enol ion (m/z 44) with acetaldehyde gives a strongly dominant product,m/z 45, formed mainly by proton transfer from the ion to the molecule. The abundance of the product coming from a H. abstraction reaction from the neutral, albeit more exothermic, is negligible. In order to explain this result, the long lived [CH2CHOH.+, CH3CHO] solvated ion was generated by reaction of the CH2CHOH.+ enol ion with (CH3CHO) n in the cell of a Fourier transform ion cyclotron resonance mass spectrometer. The structure of this solvated ion was clearly established. Labeling indicates that [CH2CHOH.+, CH3CHO], upon low energy collisions, reacts by H. abstraction more rapidly than by H+ transfer to the neutral moiety. This shows that the entropic factors are determinant when the enol ion reacts directly with acetaldehyde.  相似文献   

6.
Crystallographic and computational studies suggest the occurrence of favourable interactions between polarizable arenes and halogen atoms. However, the systematic experimental quantification of halogen⋅⋅⋅arene interactions in solution has been hindered by the large variance in the steric demands of the halogens. Here we have synthesized molecular balances to quantify halogen⋅⋅⋅arene contacts in 17 solvents and solvent mixtures using 1H NMR spectroscopy. Calculations indicate that favourable halogen⋅⋅⋅arene interactions arise from London dispersion in the gas phase. In contrast, comparison of our experimental measurements with partitioned SAPT0 energies indicate that dispersion is sufficiently attenuated by the solvent that the halogen⋅⋅⋅arene interaction trend was instead aligned with increasing exchange repulsion as the halogen increased in size (ΔGX⋅⋅⋅Ph=0 to +1.5 kJ mol−1). Halogen⋅⋅⋅arene contacts were slightly less disfavoured in solvents with higher solvophobicities and lower polarizabilities, but strikingly, were always less favoured than CH3⋅⋅⋅arene contacts (ΔGMe⋅⋅⋅Ph=0 to −1.4 kJ mol−1).  相似文献   

7.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

8.
The halide anions present in the electrolyte improve the Faradaic efficiencies (FEs) of the multi-hydrocarbon (C2+) products for the electrochemical reduction of CO2 over copper (Cu) catalysts. However, the mechanism behind the increased yield of C2+ products with the addition of halide anions remains indistinct. In this study, we analysed the mechanism by investigating the electronic structures and computing the relative free energies of intermediates formed from CO2 to C2H4 on the Cu (100) facet based on density functional theory (DFT) calculations. The results show that formyl *CHO from the hydrogenation reaction of the adsorbed *CO acts as the key intermediate, and the C−C coupling reaction occurs preferentially between *CHO and *CO with the formation of a *CHO-CO intermediate. We then propose a free-energy pathway of C2H4 formation. We find that the presence of halide anions significantly decreases the free energy of the *CHOCH intermediate, and enhances desorption of C2H4 in the order of I>Cl>Br>F. Lastly, the obtained results are rationalized through Bader charge analysis.  相似文献   

9.
FTIR spectroscopy and quantum chemical calculations at the RTF + MP2/6-311G** level of theory with solvation model density (SMD) corrections were used to study ion solvation and association in LiBr/acetonitrile solutions. The aim of this study was to establish the composition and geometry of the predominant ionic species solvated by acetonitrile molecules and to analyse their spectroscopic signatures. The results obtained make it possible to propose an equilibrium between Li+Br(CH3CN)3, Li+(CH3CN)4, and anionic Br(CH3CN)n complexes with an undetermined n value and bent coordination of the solvent molecules. The calculated wavenumbers and the geometric parameters of the solvated ionic species were found to be in excellent agreement with the experimental data.  相似文献   

10.
A high oxidation state alkylnitridoosmium complex, [Os(N)(CH2SiMe3)4][NBun4] acts as a nucleophile in reactions with alkyl halides. Alkylimido complexes, Os(NR)(CH2SiMe3)4, are produced. The reaction between [Os(N)(CH2SiMe3)4] [NBun4] and MeI is second order with k2= 9.5 x 10−5 sect̄1 M−1 at 23°C in CD2Cl2 under pseudo first order conditions. The entropy of activation, ΔS, was found to be −10.6 ± 0.5 cal M−1 K−1 and the enthalpy of activation, ΔH, was found to be 19.6 ± 0.2 kcal M−1. The reaction proceeds faster in polar, non-coordinating solvents than in either non-polar solvents or in solvents which can coordinate to the osmium center.  相似文献   

11.
The BEBO method was used to calculate the kinetic isotope effect for formyl-hydrogen abstraction from acetaldehyde by methyl radicals. The calculated isotope effect and experimental ratios of the rate constants obtained at 785°K for the reactions of CH3 with CH3CHO and CH3CDO, together with the theoretical temperature dependence of the specific rates (as formulated by the BEBO theory), were used to obtain rate constants for the steps CH3 + CH3CHO → CH4 + CH3CO (2a), CH3 + CH3CHO → CH4 + CH2CHO (2b), and CH3 + CH3CDO → CH3D + CH3CO (1a) between 298 and 1224°K. It was shown that the curvature apparent in the Arrhenius plot of the rate coefficient k2 reported for the reaction of methyl radicals with acetaldehyde in the temperature range of 298–1224°K is caused both by the simultaneous contribution of steps (2a) and (2b) to methane formation, and by the curvature in the Arrhenius plots of the two elementary rate constants themselves. The predicted curve agrees well with the experimental data, especially if the tunneling correction is applied.  相似文献   

12.
The phosphorescence spectrum of CD3CDO(3A″) has been obtained by collisional sensitization with triplet state sensitizers. The energy of CD3CDO(3A″) has been assigned at 27 400 ± 200 cm?1.  相似文献   

13.
《Chemical physics letters》2002,350(5-6):650-655
The dissociative photodetachment dynamics of (SO2)3 were studied by photoelectron–photofragment coincidence spectroscopy at 258 nm. Correlation between the photoelectron and photofragment translational energies was observed as previously seen in the dimer system, implying the presence of a dimer core. The three-body dissociation dynamics of (SO2)3 after photodetachment are consistent with a dimer core solvated by a spectator SO2 molecule with a broad distribution in initial geometry.  相似文献   

14.
《Chemical physics letters》1987,136(6):562-565
Vibrational dipole matrix elements and radiative transition probabilities have been evaluated from electric dipole moment functions for the X1Σ+ states of CH+ and CD+, which were calculated from highly correlated electronic wavefunctions. The dipole moments in ν = 0 amount to 1.679 D (CH+) and 1.313 D (CD+), respectively. In comparison to other molecular ions the infrared transition probabilities are found to be rather small. For instance, the Einstein coefficient of spontaneous emission A10 amounts to 1.63 s−1 (CH+) and 0.19 s−1 (CD+). Dipole moment functions of the neutral CH species in the X2Π and a4 Σ states have also been calculated and are compared with previous theoretical functions.  相似文献   

15.
The far infrared spectra from 300 to 50 cm−1 of methyl nitrate, CH3ONO2, and methyl-d3 nitrate, CD3NO2, have been recorded at a resolution of 0.12 cm−1. The fundamental methyl torsional mode has been observed at 204.5 cm−1 (154.2 cm−1 for CD3ONO2) with two excited states falling to lower frequencies which gives a V3 barrier of 980 ± 40 cm−1 (2.80 ± 0.11 kcal/mol). The NO2 torsion (methoxy) has been observed with the 1 ← 0 transition being at 133.7 cm−1 (119.5 cm−1 for CD3ONO2) and eight successive excited states falling to lower frequencies. From these data the twofold barrier to internal rotation has been calculated to be 2650 ± 75 cm−1 (7.69 ± 0.21 kcal/mol).  相似文献   

16.
New mono-, di- and trinuclear, cationic and anionic species of Ru(III) complexes containing ammonia, thiocyanate and halide ions have been prepared by the reaction of NH4SCN on[Ru(NH3)5X]X2 (X = Cl, Br, I) at various temperatures. A polynuclear species of RU(II) is also described. The reaction products are temperature dependent. All the compounds have been characterised by chemical analyses, spectral (IR, UV and visible), magnetic susceptibility, polarographic, cyclic voltammetry, conductivity and ion exchange studies. Interconversion among various products has also been described. New acids of Ru(III), H[Ru(NH3)2X3(NCS)] (X = Cl, Br, I) have been isolated and their properties have been studied.  相似文献   

17.
The method of chemical trapping for formyl intermediates has been studied, with syngas conversion to ethanol over rhodium-based catalysts as the diagnostic reaction concerned, and CH3I as the trapping reagent. Two species of acetaldehyde, i.e., CH3CHO and CH3CDO, were produced in the trapping reaction following CO + 2D2 reaction. It was shown that the formation of CH3CHO in the trapping reaction resulted from dehydrogenation of CH3 from CH3I to give H, which induced the formation of CH3CHO in the presence of CO and CH3 So there may be two pathways for the formation of CH3CDO in the trapping reaction: one, methylation of DCO adspecies; the other, deuteration of CH3 CO formed by CO insertion into CH3 The catalyst surface was purged with Ar following CO + 2D2 reaction before the trapping reaction was performed. By means of this modified method of chemical trapping for formyl intermediates, CH3CDO was found to be mainly derived from the methylation of DCO adspecies. Accordingly, it could be concluded that formyl is a C1 intermediate in the syngas conversion to ethanol over rhodium-based catalysts.  相似文献   

18.
1H and 119Sn NMR results indicate that, when Ph3SnOH is dissolved in CD2Cl2, it dehydrates to (Ph3Sn)2O, only a small amount of Ph3SnOH remaining in equilibrium at room temperature. As a result, the reaction of TiCl4 with Ph3SnOH in CH2Cl2 proceeds via hydrolysis of the halide to precipitate amorphous TiO2 that contains adsorbed organotin species. Calcination of the amorphous precursor to 723 K yields nanoparticles of tin‐doped TiO2 photocatalysts, that contain anatase and rutile phases, and may also contain a segregated SnO2 phase. The reaction conditions that lead to the formation of a SnO2 phase have been studied and we have found that it is formed when the amorphous precipitate is not thoroughly washed with CH2Cl2 or when non‐recrystallized commercial Ph3SnOH is used as a starting material. The catalysts obtained have a high activity for the photooxidation of toluene in the gas phase. In particular, a material obtained from non‐recrystallized Ph3SnOH is particularly promising because the toluene photooxidation rate is more than twice as high as when using Degussa P25. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The Raman (3500-10 cm−1) and infrared (3500-50 cm−1) spectra of solid ethyldichlorophosphine-borane, CH3CH2P(BH3)Cl2 and its deuterated analog, CH3CH2P(BD3)Cl2 have been recorded. Additionally, the infrared spectra of the gases and the Raman spectra of the liquids have been recorded and qualitative depolarization ratios have been obtained. Based on the fact that several distinct Raman lines disappear on going from the liquid to the solid state, it is concluded that the molecule exists as a mixture of the gauche and trans conformers, with the trans conformer being more stable in the liquid phase, and the only one present in the solid phase. From a temperature study of the Raman spectrum of the liquid, the enthalpy difference between the gauche and trans conformers was determined to be nearly zero. Based on Raman depolarization data, group frequencies, isotopic shift factors and infrared band contours, a complete vibrational assignment has been proposed for the trans conformer. The assignment is supported by a normal coordinate calculation which was carried out utilizing a modified valence force field to obtain the frequencies of the normal modes and the potential energy distribution. The BH3 torsion has been observed at 188 cm−1, while the BD3 torsion was not observed. The methyl torsions in the spectra of the solids have been observed at 209 and 202 cm−1 for the “light” and deuterated species, respectively. From the torsional data, barriers to internal rotation have been calculated. The asymmetric torsional mode has been observed for the trans conformer in the infrared spectra of the gas phase at 108 and 104 cm−1 for the BH3 and BD3 species, respectively. These results are compared with similar quantities for some corresponding organophosphine—borane compounds.  相似文献   

20.
《Chemical physics letters》1982,92(2):172-174
Ten different ion clusters, (RH), are investigated by means of SCF and Cl computations in a double-zeta plus polarization basis set. For RH = H2O, CH3OH and other compounds with a hydroxy group, Cl is located along the line somewhat deviated from the extension of the OH bond. This bridge-type structure comes from the electrostatic bonding force plus the minor covalent nature of the OH. Cl bond. The standard OH...Cl− distance is obtained to be 2.2–2.4 A. The calculated stabilization energies are found to be in reasonable agreement with the available gas-phase experimental values of ΔH0 except for Cl(HCOOH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号