首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Molecular rotors are a class of fluorophores that enable convenient imaging of viscosity inside microscopic samples such as lipid vesicles or live cells. Currently, rotor compounds containing a boron-dipyrromethene (BODIPY) group are among the most promising viscosity probes. In this work, it is reported that by adding heavy-electron-withdrawing −NO2 groups, the viscosity-sensitive range of a BODIPY probe is drastically expanded from 5–1500 cP to 0.5–50 000 cP. The improved range makes it, to our knowledge, the first hydrophobic molecular rotor applicable not only at moderate viscosities but also for viscosity measurements in highly viscous samples. Furthermore, the photophysical mechanism of the BODIPY molecular rotors under study has been determined by performing quantum chemical calculations and transient absorption experiments. This mechanism demonstrates how BODIPY molecular rotors work in general, why the −NO2 group causes such an improvement, and why BODIPY molecular rotors suffer from undesirable sensitivity to temperature. Overall, besides reporting a viscosity probe with remarkable properties, the results obtained expand the general understanding of molecular rotors and show a way to use the knowledge of their molecular action mechanism for augmenting their viscosity-sensing properties.  相似文献   

2.
A new family of robust, non-toxic, water-compatible ruthenium(II) vinyl probes allows the rapid, selective and sensitive detection of endogenous carbon monoxide (CO) in live mammalian cells under normoxic and hypoxic conditions. Uniquely, these probes incorporate a viscosity-sensitive BODIPY fluorophore that allows the measurement of microscopic viscosity in live cells via fluorescence lifetime imaging microscopy (FLIM) while also monitoring CO levels. This is the first example of a probe that can simultaneously detect CO alongside small viscosity changes in organelles of live cells.  相似文献   

3.
BODIPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials, and molecular probes. At the same time, BODIPY dyes have small or moderate Stokes shifts like most other fluorophores. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. The new boron containing BODIPY dye was designed and synthesized. We succeeded to perform an annulation of pyrrole ring with coumarin heterocyclic system and achieved a remarkable difference in absorption and emission maximum of obtained fluorophore up to 100 nm. This BODIPY dye was equipped with linker arm and was functionalized with a maleimide residue specifically reactive towards thiol groups of proteins. BODIPY residue equipped with a suitable targeting protein core can be used as a suitable imaging probe and agent for Boron Neutron Capture Therapy (BNCT). As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal constructions. The released sulfhydryl groups of the homocysteine functional handle in thiolactone modified HSA were labeled with BODIPY dye to prepare a labeled albumin-BODIPY dye conjugate confirmed by MALDI-TOF-MS, UV-vis, and fluorescent emission spectra. Cytotoxicity of the resulting conjugate was investigated. This study is the basis for a novel BODIPY dye-albumin theranostic for BNCT. The results provide further impetus to develop derivatives of HSA for delivery of boron to cancer cells.  相似文献   

4.
The development of a dual probe that provides ratiometric measurements of fluid viscosity is described. The design is based on coupling of a primary fluorophore with viscosity-independent fluorescence emission (blue unit) with a secondary fluorophore that exhibits viscosity-sensitive fluorescent emission quantum yield (red unit). Excitation of the secondary fluorophore can be achieved via Resonance Energy Transfer. The ratio of the fluorescence emission of these fluorophores provides an accurate, ratiometric measurement of solvent viscosity.  相似文献   

5.
Viscosity and temperature variations in the microscopic world are of paramount importance for diffusion and reactions. Consequently, a plethora of fluorescent probes have evolved over the years to enable fluorescent imaging of both parameters in biological cells. However, the simultaneous effect of both temperature and viscosity on the photophysical behavior of fluorophores is rarely considered, yet unavoidable variations in temperature can lead to significant errors in the readout of viscosity and vice versa. Here we examine the effect of temperature on the photophysical behavior of three classes of viscosity-sensitive fluorophores termed ‘molecular rotors’. For each of the fluorophores we decouple the effect of temperature from the effect of viscosity. In the case of the conjugated porphyrin dimer, we demonstrate that, uniquely, simultaneous dual-mode lifetime and intensity measurements of this fluorophore can be used for measuring both viscosity and temperature concurrently.  相似文献   

6.
We report the solvatochromic, viscosity-sensitive, and single-molecule photophysics of the fluorophores DCDHF-N-6 and DCDHF-A-6. These molecules are members of the dicyanomethylenedihydrofuran (DCDHF) class of single-molecule emitters that contain an amine electron donor and a DCDHF acceptor linked by a conjugated unit; DCDHF-N-6 and DCDHF-A-6 have naphthalene- and anthracene-conjugated linkers, respectively. These molecules maintain the beneficial photophysics of the phenylene-linked DCDHF (i.e., photostability, emission wavelength dependence on solvent polarity, and quantum yield sensitivity to solvent viscosity), yet offer absorption and emission at longer wavelengths that are more appropriate for cellular imaging. We demonstrate that these new fluorophores are less photolabile in an aqueous environment than several other commonly used dyes (rhodamine 6G, Texas Red, and fluorescein). Finally, we image single copies of the acene DCDHFs diffusing in the plasma membrane of living cells.  相似文献   

7.
《中国化学快报》2022,33(12):5042-5046
The need for temporal resolution and long-term stability in super-resolution fluorescence imaging has motivated research to improve the photostability of fluorescent probes. Due to the inevitable photobleaching of fluorophores, it is difficult to obtain long-term super-resolution imaging regardless of the self-healing strategy of introducing peroxide scavengers or the strategy of fluorophore structure modification to suppress TICT formation. The buffered fluorogenic probe uses the intact probes in the buffer pool to continuously replace the photobleached ones in the target, which greatly improves the photostability and enables stable dynamic super-resolution imaging for a long time. But the buffering capacity comes at the expense of reducing the number of fluorescent probes in targets, resulting in low staining fluorescence intensity. In this paper, we selected BODIPY 493, a lipid droplet probe with high fluorescence brightness, to explore the dynamic process of lipid droplet staining of this probe in cells. We found that BODIPY 493 only needs very low laser power for lipid droplet imaging due to the high molecular accumulation in lipid droplets and the high brightness, and the spatiotemporal resolution is greatly improved. More importantly, we found that BODIPY 493 also has a certain buffering capacity, which enables BODIPY 493 to be used for super-resolution imaging of lipid droplet dynamics. This work reminds researchers to coordinate the buffering capacity and brightness of fluorogenic probes.  相似文献   

8.
Precise quantification of trace components in whole blood via fluorescence is of great significance. However, the applicability of current fluorescent probes in whole blood is largely hindered by the strong blood autofluorescence. Here, we proposed a blood autofluorescence-suppressed sensing strategy to develop an activable fluorescent probe for quantification of trace analyte in whole blood. Based on inner filter effect, by screening fluorophores whose absorption overlapped with the emission of blood, a redshift BODIPY quencher with an absorption wavelength ranging from 600–700 nm was selected for its superior quenching efficiency and high brightness. Two 7-nitrobenzo[c] [1,2,5] oxadiazole ether groups were introduced onto the BODIPY skeleton for quenching its fluorescence and the response of H2S, a gas signal molecule that can hardly be quantified because of its low concentration in whole blood. Such detection system shows a pretty low background signal and high signal-to-back ratio, the probe thus achieved the accurate quantification of endogenous H2S in 20-fold dilution of whole blood samples, which is the first attempt of quantifying endogenous H2S in whole blood. Moreover, this autofluorescence-suppressed sensing strategy could be expanded to other trace analytes detection in whole blood, which may accelerate the application of fluorescent probes in clinical blood test.  相似文献   

9.
The aggregation-induced emission(AIE) phenomenon provides a new direction for the development of organic light-emitting devices. Here, we present a new class of emitters based on 4,4-difluoro-4-bora-3 a,4 a-diaza-s-indacene(BODIPY), functionalized at different positions with tetraphenylethylene(TPE), which is one of the most famous AIE luminogens. Thanks to this modification, we were able to tune the photoluminescence of the BODIPY moiety from the green to the near-infrared(NIR)spectral range and achieve PL efficiencies of ~50% in the solid state. Remarkably, we observed an enhancement of the AIE and up to ~100% photoluminescence efficiencies by blending the TPE-substituted BODIPY fluorophores with a poly[(9,9-di-noctylfluorene-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,7-diyl)](F8 BT) matrix. By incorporating these blends in organic lightemitting diodes(OLEDs), we obtained electroluminescence peaked in the range 650–700 nm with up to 1.8% external quantum efficiency and ~2 m W/cm2 radiance, a remarkable result for red/NIR emitting and solution-processed OLEDs.  相似文献   

10.
We describe the design, synthesis and fluorescent profile of a family of self-calibrating dyes that provide ratiometric measurements of fluid viscosity. The design is based on covalently linking a primary fluorophore (reference) that displays a viscosity-independent fluorescence emission with a secondary fluorophore (sensor) that exhibits a viscosity-sensitive fluorescence emission. Characterization of fluorescent properties was made with separate excitation of the units and through Resonance Energy Transfer from the reference to the sensor dye. The chemical structures of both fluorophores and the linker length have been evaluated in order to optimize the overall brightness and sensitivity of the viscosity measurements. We also present an application of such ratiometric dyes for the detection of membrane viscosity changes in a liposome model.  相似文献   

11.
Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays intriguing biological roles. To study the biological role of H2S, efficient fluorescent probes are in great demand. For imaging of H2S in deep-tissue, a two-photon probe that emits in the red wavelength region is of choice to avoid the autofluorescence from intrinsic biomolecules. Here, we disclose such a probe, which, developed based on an acetyl benzocoumarin fluorophore, can be excited at 900?nm under two-photon excitation and emit in the red region. The probe shows high reactivity, selectivity, and sensitivity in in vitro assays. Two-photon microscopic imaging of H2S in HeLa cells aided by the probe demonstrates that it is potentially useful to study H2S level changes in cells and tissues influenced by external stimuli.  相似文献   

12.
The arsenal of fluorescent probes tailored to functional imaging of cells is rapidly growing and benefits from recent developments in imaging strategies. Here, we present a new molecular rotor, which displays strong absorption in the green region of the spectrum, very little solvatochromism, and strong emission sensitivity to local viscosity. The emission increase is paralleled by an increase in emission lifetime. Owing to its concentration-independent nature, fluorescence lifetime is particularly suitable to image environmental properties, such as viscosity, at the intracellular level. Accordingly, we demonstrate that intracellular viscosity measurements can be efficiently carried out by lifetime imaging with our probe and phasor analysis, an efficient method for measuring lifetime-related properties (e.g., bionalyte concentration or local physicochemical features) in living cells. Notably, we show that it is possible to monitor the partition of our probe into different intracellular regions/organelles and to follow mitochondrial de-energization upon oxidative stress.  相似文献   

13.
(aza-)BODIPY dyes (boron dipyrromethene dyes) are well-established fluorophores due to their large quantum yields, stability, and diversity, which led to promising applications including imaging techniques, sensors, organic (opto)electronic materials, or biomedical applications. Although the control of the optical properties in (aza-)BODIPY dyes by peripheral functional groups is well studied, we herein present a novel approach to modify the 12 π-electron core of the dipyrromethene scaffold. The replacement of two carbon atoms in the β-position of a BODIPY dye by two nitrogen atoms afforded a 14 π-electron system, which was termed BODIIM (boron diimidazolylmethene) in systematic analogy to the BODIPY dyes. Remarkably, the BODIIM dye was obtained with a BH2-rigidifying entity, which is currently elusive and highly sought after for the BODIPY dye class. DFT-Calculations confirm the [12+2] π-electron relationship between BODIPY and BODIIM and reveal a strong shape correlation between LUMO in the BODIPY and the HOMO of the BODIIM. The modification of the π-system leads to a dramatic shift of the optical properties, of which the fluorescent emission is most noteworthy and occurs at much larger Stokes shift, that is, ≈500 cm−1 in BODIPY versus >4170 cm−1 in BODIIM system in all solvents investigated. Nucleophilic reactivity was found at the meso-carbon atom in the formation of stable borane adducts with a significant shift of the fluorescent emission, and this behavior contrasts the reactivity of conventional BODIPY systems. In addition, the reverse decomplexation of the borane adducts was demonstrated in reactions with a representative N-heterocyclic carbene to retain the strongly fluorescent BODIIM compound, which suggests applications as fully reversible fluorescent switch.  相似文献   

14.
A new generation of monomolecular imaging probes (MOMIP) based on a distyryl‐BODIPY (BODIPY=boron‐dipyrromethene) coupled with three DOTA macrocycles has been prepared (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The MOMIP presents good fluorescence properties and is very stable in serum. The bimodal probe was conjugated to trastuzumab, and an optical in vivo study showed high accumulation of the imaging agent at the tumor site. 111In radiometallation of the bioconjugate was performed in high radiochemical yield, highlighting the potential of this new BODIPY‐chelators derivative as a bimodal imaging probe.  相似文献   

15.
There is a growing need for cellular imaging with fluorescent probes that emit at longer wavelengths to minimize the effects of absorption, autofluorescence, and scattering from biological tissue. In this paper a series of new environmentally sensitive hemicyanine dyes featuring amino(oligo)thiophene donors have been synthesized via aldol condensation between a 4-methylpyridinium salt and various amino(oligo)thiophene carboxaldehydes, which were, in turn, obtained from amination of bromo(oligo)thiophene carboxaldehyde. Side chains on these fluorophores impart a strong affinity for biological membranes. Compared with benzene analogues, these thiophene fluorophores show significant red shift in the absorption and emission spectra, offering compact red and near-infrared emitting fluorophores. More importantly, both the fluorescence quantum yields and the emission peaks are very sensitive to various environmental factors such as solvent polarity or viscosity, membrane potential, and membrane composition. These chromophores also exhibit strong nonlinear optical properties, including two-photon fluorescence and second harmonic generation, which are themselves environmentally sensitive. The combination of long wavelength fluorescence and nonlinear optical properties make these chromophores very suitable for applications that require sensing or imaging deep inside tissues.  相似文献   

16.
The simultaneous discrimination of Cys, Hcy, and GSH by a single probe is still an unmet challenge. The design and synthesis of a small molecule probe MeO‐BODIPY‐Cl (BODIPY=boron dipyrromethene) is presented, which can allow Cys, Hcy, and GSH to be simultaneously discriminated on the basis of three distinct fluorescence turn‐on responses. The probe reacts with these thiols to form sulfenyl‐substituted BODIPY, which is followed by intramolecular displacement to yield amino‐substituted BODIPY. The kinetic rate of the intramolecular displacement reaction determines the observed different sensing behavior. Therefore, the probe responds to Cys, Hcy, and GSH with fluorescence turn‐on colors of yellow, yellow and red, and red, respectively. With this promising feature in hand, the probe was successfully used in imaging of Cys, Hcy and GSH in living cells.  相似文献   

17.
Hydrogen sulfide has recently been identified as a biologically responsive species. The design and synthesis of fluorescence probes, which are constructed with Nile-red or Nile-blue fluorophores and a fluorescence-controllable dinitrophenyl group, for hydrogen sulfide are reported in this paper. The Nile-red–dinitrophenyl-ether-group-based probe (1a) is essentially non-fluorescent because of the inhibition of the photo-induced electron-transfer process; when the dinitrobenzene moiety is removed by nucleophilic substitution with the hydrosulfide anion, probe 1a is converted into hydroxy Nile red, eliciting a H2S-induced fluorescence turn-on signal. Furthermore, probe 1a has high selectivity and sensitivity for the hydrosulfide anion, and its potential for biological applications was confirmed by using it for real-time fluorescence imaging of hydrogen sulfide in live HeLa cells. The Nile-blue–dinitrobenzene-based probe (1b) has gradually diminishing brightness in the red-emission channel with increased hydrogen-sulfide concentration. Thus, this paper reports a comparative study of Nile-red and Nile-blue-based hydrogen-sulfide probes. Graphical Abstract
?  相似文献   

18.
Developing molecular fluorophores with enhanced fluorescence in aggregate state for the second near-infrared (NIR-II) imaging is highly desirable but remains a tremendous challenge due to the lack of reliable design guidelines. Herein, we report an aromatic substituent strategy to construct highly bright NIR-II J-aggregates. Introduction of electron-withdrawing substituents at 3,5-aryl and meso positions of classic boron dipyrromethene (BODIPY) skeleton can promote slip-stacked J-type arrangement and further boost NIR-II fluorescence of J-aggregates via increased electrostatic repulsion and intermolecular hydrogen bond interaction. Notably, NOBDP-NO2 with three nitro groups (−NO2) shows intense NIR-II fluorescence at 1065 nm and high absolute quantum yield of 3.21 % in solid state, which can be successfully applied in bioimaging, high-level encoding encryption, and information storage. Moreover, guided by this electron-withdrawing substituent strategy, other skeletons (thieno-fused BODIPY, aza-BODIPY, and heptamethine cyanine) modified with −NO2 are converted into J-type aggregates with enhanced NIR-II fluorescence, showing great potential to convert aggregation caused emission quenching (ACQ) dyes into brilliant J-aggregates. This study provides a universal method for construction of strong NIR-II emissive J-aggregates by rationally manipulating molecular packing and establishing relationships among molecular structures, intermolecular interactions, and fluorescence properties.  相似文献   

19.
The design and fabrication of new type viscosity sensor on molecular scale will enrich the detection means in both physical and life sciences. In this work, a rotor-containing fluorescent dye was prepared, which can reveal a typical viscosity-sensitive behavior due to the environment-induced non-radiative decay. The viscosity-sensitive behavior of this dye could be tunable (locked and activated) in aqueous environment, either with the reversible light-driven trans/cis-photoisomerization of the cyanostilbene moiety, or with the reversible assembly/disassembly process of β-cyclodextrin (β-CD) to the rotor part. Such dual-mode tunable viscosity sensitivity can be well distinguished by fluorescent spectra. A slope method, on double-logarithmic plots of the fluorescent signal to the corresponding environmental viscosity, makes a quantitative estimation to the tunable viscosity sensitivity, featuring the ‘Activated’ and the ‘Locked’ state in this molecular-scale viscometer.  相似文献   

20.
A fundamental, highly fluorescent, and easily accessible scaffold derived from the BODIPY core is reported. The use of benzimidazole as a bridging ligand at the meso position enables the binding of two BF2 units to provide sufficient rigidity and enhanced electron‐withdrawing strength. Absorption and emission events thus take place in the red (λ≈600 nm); the fluorescence quantum yields can reach unity (0.96) and show little dependence on solvent polarity. The synthetic route was shortened to two steps starting from commercially available precursors while the preparation is modular and tolerates various pyrrole and benzimidazole moieties. Fluoride replacement by propynyl groups, various halogenations, as well as Knoevenagel‐type condensations were applied to extend the versatility of these new photostable fluorophores, which we termed BOIMPYs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号