首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The large-scale deployment of CO2 electroreduction is hampered by deficient carbon utilization in neutral and alkaline electrolytes due to CO2 loss into (bi)carbonates. Switching to acidic media mitigates carbonation, but suffers from low product selectivity because of hydrogen evolution. Here we report a crown ether decoration strategy on a Cu catalyst to enhance carbon utilization and selectivity of CO2 methanation under acidic conditions. Macrocyclic 18-Crown-6 is found to enrich potassium cations near the Cu electrode surface, simultaneously enhancing the interfacial electric field to stabilize the *CO intermediate and accelerate water dissociation to boost *CO protonation. Remarkably, the mixture of 18-Crown-6 and Cu nanoparticles affords a CH4 Faradaic efficiency of 51.2 % and a single pass carbon efficiency of 43.0 % toward CO2 electroreduction in electrolyte with pH=2. This study provides a facile strategy to promote CH4 selectivity and carbon utilization by modifying Cu catalysts with supramolecules.  相似文献   

2.
Heterogeneously catalyzed N-formylation of amines to formamide with CO2/H2 is highly attractive for the valorization of CO2. However, the relationship of the catalytic performance with the catalyst structure is still elusive. Herein, mixed valence catalysts containing Cu2O/Cu interface sites were constructed for this transformation. Both aliphatic primary and secondary amines with diverse structures were efficiently converted into the desired formamides with good to excellent yields. Combined ex and in situ catalyst characterization revealed that the presence of Cu2O/Cu interface sites was vital for the excellent catalytic activity. Density functional theory (DFT) calculations demonstrated that better catalytic activity of Cu2O/Cu(111) than Cu(111) is attributed to the assistance of oxygen at the Cu2O/Cu interface (Ointer) in formation of Ointer-H moieties, which not only reduce the apparent barrier of HCOOH formation but also benefit the desorption of the desired N-formylated amine, leading to high activity and selectivity.  相似文献   

3.
It is still a great challenge to achieve high selectivity of CH4 in CO2 electroreduction reactions (CO2RR) because of the similar reduction potentials of possible products and the sluggish kinetics for CO2 activation. Stabilizing key reaction intermediates by single type of active sites supported on porous conductive material is crucial to achieve high selectivity for single product such as CH4. Here, Cu2O(111) quantum dots with an average size of 3.5 nm are in situ synthesized on a porous conductive copper-based metal–organic framework (CuHHTP), exhibiting high selectivity of 73 % towards CH4 with partial current density of 10.8 mA cm−2 at −1.4 V vs. RHE (reversible hydrogen electrode) in CO2RR. Operando infrared spectroscopy and DFT calculations reveal that the key intermediates (such as *CH2O and *OCH3) involved in the pathway of CH4 formation are stabilized by the single active Cu2O(111) and hydrogen bonding, thus generating CH4 instead of CO.  相似文献   

4.
Fine-tuning electronic structures of single-atom catalysts (SACs) plays a crucial role in harnessing their catalytic activities, yet challenges remain at a molecular scale in a controlled fashion. By tailoring the structure of graphdiyne (GDY) with electron-withdrawing/-donating groups, we show herein the electronic perturbation of Cu single-atom CO2 reduction catalysts in a molecular way. The elaborately introduced functional groups (−F, −H and −OMe) can regulate the valance state of Cuδ+, which is found to be directly scaled with the selectivity of the electrochemical CO2-to-CH4 conversion. An optimum CH4 Faradaic efficiency of 72.3 % was achieved over the Cu SAC on the F-substituted GDY. In situ spectroscopic studies and theoretical calculations revealed that the positive Cuδ+ centers adjusted by the electron-withdrawing group decrease the pKa of adsorbed H2O, promoting the hydrogenation of intermediates toward the CH4 production. Our strategy paves the way for precise electronic perturbation of SACs toward efficient electrocatalysis.  相似文献   

5.
Cu2O is an attractive catalyst for the selective reduction of CO2 to methanol. However, the mechanism of the reaction and the role of the Cu species in different oxidation states are not well understood yet. In this work, by first-principles calculations, we investigate the mechanism of the reaction on the Cu2O(110) surface, which is the most selective for methanol, in different degrees of reduction: ideal surface, slightly reduced surface (SRS), and partially reduced surface (PRS). The most favorable reaction pathways on the three surfaces were identified. We found that Cu(I) on the ideal surface is not capable of chemisorbing CO2, but surface oxygen serves as the active site which selectively converts CO2 to CH3OH with a limiting potential of −0.77 V. The Cu(0) on the SRS and PRS promotes the adsorption and reduction of CO2, while the removal of the residue O* becomes potential/rate limiting with a more negative limiting potential than the ideal surface. The SRS is selective to methanol while the PRS becomes selective to methane. The result suggests that the key to high methanol selectivity is to avoid the reduction of Cu(I), which provides a new strategy for the design of more efficient catalysts for selective CO2 reduction to methanol.  相似文献   

6.
We propose an effective highest occupied d-orbital modulation strategy engendered by breaking the coordination symmetry of sites in the atomically precise Cu nanocluster (NC) to switch the product of CO2 electroreduction from HCOOH/CO to higher-valued hydrocarbons. An atomically well-defined Cu6 NC with symmetry-broken Cu−S2N1 active sites (named Cu6(MBD)6, MBD=2-mercaptobenzimidazole) was designed and synthesized by a judicious choice of ligand containing both S and N coordination atoms. Different from the previously reported high HCOOH selectivity of Cu NCs with Cu−S3 sites, the Cu6(MBD)6 with Cu−S2N1 coordination structure shows a high Faradaic efficiency toward hydrocarbons of 65.5 % at −1.4 V versus the reversible hydrogen electrode (including 42.5 % CH4 and 23 % C2H4), with the hydrocarbons partial current density of −183.4 mA cm−2. Theoretical calculations reveal that the symmetry-broken Cu−S2N1 sites can rearrange the Cu 3d orbitals with as the highest occupied d-orbital, thus favoring the generation of key intermediate *COOH instead of *OCHO to favor *CO formation, followed by hydrogenation and/or C−C coupling to produce hydrocarbons. This is the first attempt to regulate the coordination mode of Cu atom in Cu NCs for hydrocarbons generation, and provides new inspiration for designing atomically precise NCs for efficient CO2RR towards highly-valued products.  相似文献   

7.
Herein, we first design a model of reversible redox-switching metal–organic framework single-unit-cell sheets, where the abundant metal single sites benefit for highly selective CO2 reduction, while the reversible redox-switching metal sites can effectively activate CO2 molecules. Taking the synthetic Cu-MOF single-unit-cell sheets as an example, synchrotron-radiation quasi in situ X-ray photoelectron spectra unravel the reversible switching CuII/CuI single sites initially accept photoexcited electrons and then donate them to CO2 molecules, which favors the rate-liming activation into CO2δ−, verified by in situ FTIR spectra and Gibbs free energy calculations. As an outcome, Cu-MOF single-unit-cell sheets achieve near 100 % selectivity for CO2 photoreduction to CO with a high rate of 860 μmol g−1 h−1 without any sacrifice reagent or photosensitizer, where both the activity and selectivity outperform previously reported photocatalysts evaluated under similar conditions.  相似文献   

8.
Porous materials capable of selectively capturing CO2 from flue‐gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size‐exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore‐size in a coordination network, [Cu(quinoline‐5‐carboxyate)2]n ( Qc‐5‐Cu ) ena+bles ultra‐high selectivity for CO2 over N2 (SCN≈40 000) and CH4 (SCM≈3300). Qc‐5‐Cu‐sql‐β , a narrow pore polymorph of the square lattice ( sql ) coordination network Qc‐5‐Cu‐sql‐α, adsorbs CO2 while excluding both CH4 and N2. Experimental measurements and molecular modeling validate and explain the performance. Qc‐5‐Cu‐sql‐β is stable to moisture and its separation performance is unaffected by humidity.  相似文献   

9.
To explore the adsorption and separation properties of CO2 in a novel material consisting of a series of polyoxometalates (POMs) impregnated within supramolecular porous catenane (shorted as SPC), grand canonical Monte Carlo (GCMC) simulations and ab initio calculations were used. GCMC simulations showed this impregnation can enhance CO2/CH4 (or CO2/N2) selectivity almost 30 times compared to the bare SPC due to the strong interaction of CO2 with the nPOMs@SPC structures. And, the loading of CO2 inhibits the adsorption of CH4 (or N2) as CO2 occupying the preferred adsorption sites. Furthermore, the effect of number, mass, and volume of POMs inserted in SPC on CO2/CH4 (or CO2/N2) selectivity over large pressure range was investigated in detail. Additionally, the accurate ab initio calculations further confirmed our GCMC simulations. As a result, the proposed nPOMs@SPC structures are promising candidates for CO2/N2 and CO2/CH4 separations. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Constructing Cu single-atoms (SAs) catalysts is considered as one of the most effective strategies to enhance the performance of electrochemical reduction of CO2 (e-CO2RR) towards CH4, however there are challenges with activity, selectivity, and a cumbersome fabrication process. Herein, by virtue of the meta-position structure of alkynyl in 1,3,5-triethynylbenzene and the interaction between Cu and −C≡C−, a Cu SAs electrocatalyst (Cu−SAs/HGDY), containing low-coordination Cu−C2 active sites, was synthesized through a simple and efficient one-step method. Notably, this represents the first achievement of preparing Cu SAs catalysts with Cu−C2 coordination structure, which exhibited high CO2-to-CH4 selectivity (72.1 %) with a high CH4 partial current density of 230.7 mA cm−2, and a turnover frequency as high as 2756 h−1, dramatically outperforming currently reported catalysts. Comprehensive experiments and calculations verified the low-coordination Cu−C2 structure not only endowed the Cu SAs center more positive electricity but also promoted the formation of H•, which contributed to the outstanding e-CO2RR to CH4 electrocatalytic performance of Cu−SAs/HGDY. Our work provides a novel H⋅-transferring mechanism for e-CO2RR to CH4 and offers a protocol for the preparation of two-coordinated Cu SAs catalysts.  相似文献   

11.
Here, we report two novel water‐stable amine‐functionalized MOFs, namely IISERP‐MOF26 ([NH2(CH3)2][Cu2O(Ad)(BDC)]?(H2O)2(DMA), 1 ) and IISERP‐MOF27 ([NH2(CH3)2]1/2[Zn4O(Ad)3(BDC)2]?(H2O)2(DMF)1/2, 2 ), which show selective CO2 capture capabilities. They are made by combining inexpensive and readily available terephthalic acid and N‐rich adenine with Cu and Zn, respectively. They possess 1D channels decorated by the free amine group from the adenine and the polarizing oxygen atoms from the terephthalate units. Even more, there are dimethyl ammonium (DMA+) cations in the pore rendering an electrostatic environment within the channels. The activated Cu‐ and Zn‐MOFs physisorb about 2.7 and 2.2 mmol g?1 of CO2, respectively, with high CO2/N2 and moderate CO2/CH4 selectivity. The calculated heat of adsorption (HOA=21–23 kJ mol?1) for the CO2 in both MOFs suggest optimal physical interactions which corroborate well with their facile on‐off cycling of CO2. Notably, both MOFs retain their crystallinity and porosity even after soaking in water for 24 hours as well as upon exposure to steam over 24 hours. The exceptional thermal and chemical stability, favorable CO2 uptakes and selectivity and low HOA make these MOFs promising sorbents for selective CO2 capture applications. However, the MOF′s low heat of adsorption despite having a highly CO2‐loving groups lined walls is quite intriguing.  相似文献   

12.
Electrochemical CO2 reduction reaction (CO2RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2H4). However, achieving high C2H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2H4 with a current density of 497.2 mA cm−2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4. The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2RR. Furthermore, theoretical calculations demonstrate that the Cuδ+/Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.  相似文献   

13.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

14.
The porous framework [Cu2(H2O)2L] ? 4 H2O ? 2 DMA (H4L=oxalylbis(azanediyl)diisophthalic acid; DMA=N,N‐dimethylacetamide), denoted NOTT‐125, is formed by connection of {Cu2(RCOO)4} paddlewheels with the isophthalate linkers in L4?. A single crystal structure determination reveals that NOTT‐125 crystallises in monoclinic unit cell with a=27.9161(6), b=18.6627(4) and c=32.3643(8) Å, β=112.655(3)°, space group P21/c. The structure of this material shows fof topology, which can be viewed as the packing of two types of cages (cage A and cage B) in three‐dimensional space. Cage A is constructed from twelve {Cu2(OOCR)4} paddlewheels and six linkers to form an ellipsoid‐shaped cavity approximately 24.0 Å along its long axis and 9.6 Å across its central diameter. Cage B consists of six {Cu2(OOCR)4} units and twelve linkers and has a spherical diameter of 12.7 Å taking into account the van der Waals radii of the atoms. NOTT‐125 incorporates oxamide functionality within the pore walls, and this, combined with high porosity in desolvated NOTT‐125a, is responsible for excellent CO2 uptake (40.1 wt % at 273 K and 1 bar) and selectivity for CO2 over CH4 or N2. Grand canonical Monte Carlo (GCMC) simulations show excellent agreement with the experimental gas isotherm data, and a computational study of the specific interactions and binding energies of both CO2 and CH4 with the linkers in NOTT‐125 reveals a set of strong interactions between CO2 and the oxamide motif that are not possible with a single amide.  相似文献   

15.
A novel electrochemically assisted cycloaddition process is proposed, in which highly efficient coupling of CO2 with styrene oxide (SO) can be achieved to form styrene carbonate (SC) as a high-value-added product. A series of Cu catalysts with different morphologies and chemical states were fabricated on carbon paper (CP) by using in-situ electrodeposition, and the sample with nano-dendrimer structure was found to exhibit a relatively high activity of 74.8 % SC yield with 92.7 % SO conversion under gentle reaction conditions, thus showing its potential for practical applications. The relatively high electrochemically active surface area and charge transfer ability of dendrimer-like Cu benefited the electrochemical reaction. In particular, the Cu2+ species that were formed in situ during the reaction played a vital role in enhancing the activity and selectivity of the proposed Cu/CP hybrid catalyst. Cu2+ atoms served as active sites that can not only electrochemically activate CO2 but also facilitate the ring opening of SO. Mechanistic analysis suggested that the reaction followed electrochemical and liquid-phase heterogeneous paths, which provide a new green and sustainable route for efficient utilization of CO2 resources for fine chemical electrosynthesis.  相似文献   

16.
Two-dimensional conductive metal-organic frameworks (2D-c-MOFs) have attracted extensive attention owing to their unique structures and physical-chemical properties. However, the planarly extended structure of 2D-c-MOFs usually limited the accessibility of the active sites. Herein, we designed a triptycene-based 2D vertically conductive MOF (2D-vc-MOF) by coordinating 2,3,6,7,14,15-hexahydroxyltriptycene (HHTC) with Cu2+. The vertically extended 2D-vc-MOF(Cu) possesses a weak interlayer interaction, which leads to a facile exfoliation to the nanosheet. Compared with the classical 2D-c-MOFs with planarly extended 2D structures, 2D-vc-MOF(Cu) exhibits a 100 % increased catalytic activity in terms of turnover number and a two-fold increased selectivity. Density functional theory (DFT) calculations further revealed that higher activity originated from the lower energy barriers of the vertically extended 2D structures during the CO2 reduction reaction process.  相似文献   

17.
Rational regulation of electronic structures and functionalities of framework materials still remains challenging. Herein, reaction of 4,4′,4′′-nitrilo-tribenzhydrazide with tris(μ2-4-carboxaldehyde-pyrazolato-N,N′)-tricopper (Cu3Py3) generates the crystalline copper organic framework USTB-11(Cu). Post-modification with divalent nickel ions affords the heterometallic framework USTB-11(Cu,Ni). Powder X-ray diffraction and theoretical simulations reveal their two-dimensional hexagonal structure geometry. A series of advanced spectroscopic techniques disclose the mixed CuI/CuII state nature of Cu3Py3 in USTB-11(Cu,Ni) with a uniform bistable Cu34+(CuI2CuII) : Cu35+(CuICuII2) (ca. 1 : 3) oxidation state, resulting in a significantly improved formation efficiency of the charge-separation state. This endows the Ni sites with enhanced activity and USTB-11(Cu,Ni) with outstanding photocatalytic CO2 to CO performance with a conversion rate of 22 130 μmol g−1 h−1 and selectivity of 98 %.  相似文献   

18.
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2-x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.  相似文献   

19.
Cu-based catalysts have been widely applied in electroreduction of carbon dioxide (CO2ER) to produce multicarbon (C2+) feedstocks (e.g., C2H4). However, the high energy barriers for CO2 activation on the Cu surface is a challenge for a high catalytic efficiency and product selectivity. Herein, we developed an in situ *CO generation and spillover strategy by engineering single Ni atoms on a pyridinic N-enriched carbon support with a sodalite (SOD) topology (Ni-SOD/NC) that acted as a donor to feed adjacent Cu nanoparticles (NPs) with *CO intermediate. As a result, a high C2H4 selectivity of 62.5 % and an industrial-level current density of 160 mA cm−2 at a low potential of −0.72 V were achieved. Our studies revealed that the isolated NiN3 active sites with adjacent pyridinic N species facilitated the *CO desorption and the massive *CO intermediate released from Ni-SOD/NC then overflowed to Cu NPs surface to enrich the *CO coverage for improving the selectivity of CO2ER to C2H4.  相似文献   

20.
In situ and operando spectroscopic and microscopic methods were used to gain insight into the correlation between the structure, chemical state, and reactivity of size‐ and shape‐controlled ligand‐free Cu nanocubes during CO2 electroreduction (CO2RR). Dynamic changes in the morphology and composition of Cu cubes supported on carbon were monitored under potential control through electrochemical atomic force microscopy, X‐ray absorption fine‐structure spectroscopy and X‐ray photoelectron spectroscopy. Under reaction conditions, the roughening of the nanocube surface, disappearance of the (100) facets, formation of pores, loss of Cu and reduction of CuOx species observed were found to lead to a suppression of the selectivity for multi‐carbon products (i.e. C2H4 and ethanol) versus CH4. A comparison with Cu cubes supported on Cu foils revealed an enhanced morphological stability and persistence of CuI species under CO2RR in the former samples. Both factors are held responsible for the higher C2/C1 product ratio observed for the Cu cubes/Cu as compared to Cu cubes/C. Our findings highlight the importance of the structure of the active nanocatalyst but also its interaction with the underlying substrate in CO2RR selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号