首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
It is demonstrated that very robust spectral component separation can be achieved through global least-squares CORE data analysis of automatically or manually selected spectral regions in complex NMR spectra in a high-resolution situation. This procedure (acronym RECORD) only takes a few seconds and quite significantly improves the effective signal/noise of the experiment as compared to individual frequency channel fitting, like in the generic HR-DOSY approach or when using basic peak height or integral fitting. Results from RECORD processing can be further used as starting value estimates for subsequent CORE analysis of spectral data with higher degree of spectral overlap.  相似文献   

2.
25Mg NMR parameters have been determined for two polymorphs of enstatite (MgSiO3), an important magnesium silicate phase present as a major component of the Earth's upper mantle. The crystal structures of both polymorphs contain two crystallographically distinct magnesium sites; however, only a single resonance is observed in 25Mg MAS NMR spectra recorded at 14.1 and 20.0 T. First-principles calculations performed on geometry-optimised crystal structures reveal that the quadrupolar interaction for the second site is expected to be very large, resulting in extensive broadening of the spectral resonance, explaining its apparent absence in the NMR spectrum. 25Mg QCPMG NMR experiments employing variable offset cumulative spectroscopy (VOCS) are used to observe the broadened site and enable measurement of NMR parameters. The large difference in quadrupolar interaction between the two crystallographic magnesium sites is rationalised qualitatively in terms of the distortion of the local coordination environment as well as longer-range effects using a simple point charge model.  相似文献   

3.
We discuss the precision of 1D chemical-shift-based 1H spin diffusion NMR experiments as well as straightforward experimental protocols for reducing errors. The 1H spin diffusion NMR experiments described herein are useful for samples that contain components with significant spectral overlap in the 1H NMR spectrum and also for samples of small mass (<1 mg). We show that even in samples that display little spectral contrast, domain sizes can be determined to a relatively high degree of certainty if common experimental variability is accounted for and known. In particular, one should (1) measure flip angles to high precision (≈±1° flip angle), (2) establish a metric for phase transients to ensure their repeatability, (3) establish a reliable spectral deconvolution procedure to ascertain the deconvolved spectra of the neat components in the composite or blend spin diffusion spectrum, and (4) when possible, perform 1D chemical-shift-based 1H spin diffusion experiments with zero total integral to partially correct for errors and uncertainties if these requirements cannot fully be implemented. We show that minimizing the degree of phase transients is not a requirement for reliable domain size measurement, but their repeatability is essential, as is knowing their contribution to the spectral offset (i.e. the J1 coefficient). When performing experiments with zero total integral in the spin diffusion NMR spectrum with carefully measured flip angles and known phase transient effects, the largest contribution to error arises from an uncertainty in the component lineshapes which can be as high as 7%. This uncertainty can be reduced considerably if the component lineshapes deconvolved from the composite or blend spin diffusion spectra adequately match previously acquired pure component spectra.  相似文献   

4.
Silica aerogel is an excellent thermal insulation material with a low thermal conductivity and a high porosity and has attracted great concern in applications. This paper was to experimentally investigate the optical properties of optically thick silica aerogel in the visible, near-infrared and infrared spectrum region. The fiber-loaded silica aerogel sample was prepared through sol–gel technique and supercritical drying process. Silica fibers were added into the aerogel during the preparation procedure to strength the skeleton of aerogel. As a comparison with the fiber-load silica aerogel, a silica fiber composite sample with the same chemical component and different physical structure was also prepared. A simplified two-flux model neglecting the boundary effect was used to describe the radiation propagation characteristics inside the samples. The spectral normal-hemispherical reflectances, transmittances, and normal emittances of silica aerogel and silica fiber samples were measured and compared in the wavelengths of 0.38–15 μm. Then the spectral optical constants of samples were determined using the experimental data. The spectral absorption and scattering coefficients of silica aerogel were within (0.01 cm−1, 31.0 cm−1) and (1.4 cm−1, 25.8 cm−1). The results showed that the spectrum region where the scattering coefficient is low usually corresponds to a high absorption coefficient. In addition, the total radiation properties of samples were predicted at high temperatures. The analysis of optical properties of silica aerogel is necessary to provide valuable data in applications.  相似文献   

5.
For styrene-butadiene rubber (SBR) compounds filled with the same volume fraction of carbon black (CB), precipitated silica and carbon–silica dual phase filler (CSDPF), filler-rubber interactions were investigated thru bound rubber content (BRC) of the compounds and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the BRC of the compound was highly related to the amount of surface area for interaction between filler and rubber, while the solid-state 1H low-field NMR spectroscopy was an effective method to evaluate the intensity of filler-rubber interaction. The silica-filled compound showed the highest BRC, whereas the CB-filled compound had the strongest filler-rubber interfacial interaction, verified by NMR transverse relaxation. The strain sweep measurements of the compounds were conducted thru a rubber process analyzer; the results showed that the CSDPF-filled compound presented the lowest Payne effect, which is mainly related to the weakened filler network structure in polymer matrix. The temperature sweep measurement, tested by dynamic mechanical thermal analysis, indicated that the glass transition temperature did not change when SBR was filled with different fillers, whereas the storage modulus in rubbery state and the tanδ peak height were greatly affected by the filler network structure of composites.  相似文献   

6.
Physisorbed cyanopropyl-methyl-phenyl-methyl-siloxane polymer on a silica surface was characterized by one- and two-dimensional solid state NMR techniques including heteronuclear proton-silicon correlation spectroscopy. Spin-lattice relaxations of protons of the siloxane polymer exhibited only small changes upon anchoring to the silica surface indicating somewhat altered molecular dynamics of proton moieties that contribute to the relaxation process. However, the same relaxation rates of the siloxane polymer’s silica atoms were reduced due to restricted mobility of the polymer. Proton-silicon heteronuclear correlation spectroscopy (HETCOR) revealed strong correlations of silanol protons with both Q3 and Q4 sites of the silica surface. In addition, a correlation between methyl protons and the Q3 site of the silica surface was observed when HETCOR experiments with very small mixing time (5 ms) were performed. The presence of these correlations is indicative of the coherent magnetization transfer mainly through dipolar mechanisms. Since magnetization transfer through the dipolar mechanism is 1/r3 dependent, methyl protons must lie in close proximity to the silica surface. Hydrogen bonding of the silica surface’s hydroxyl protons with the bridging oxygen of the siloxane polymer is most likely responsible for positioning the methyl protons closer to the surface. Additional correlations between 29Si nuclei and methylene protons next to cyano group was also observed with mixing time indicating the closer proximity of these protons to the silica surface as well. This juxtaposition of methylene protons is most likely due to hydrogen bonding of the siloxane polymer through the cyano moiety. Furthermore, the hydrogen bonding through the cyano group is most likely to be in parallel orientation to the surface. Finally, the aromatic protons exhibited weak correlations only with Q3 sites, indicating that these protons must also lie in close proximity of the silica surface.  相似文献   

7.
Ratio of H2O ortho-/para-spin-isomers in water of different treatment procedures (distilled or cavitation fountain) were studied by both Rayleigh wing four-photon spectroscopy and 1H nuclear magnetic resonance (NMR) spectroscopy. Low-frequency gas-like rotational resonances were observed in the 0.1–1.5 cm?1 (3–45 GHz) spectral range and NMR proton density was measured in both water samples. We established that the intensity of ortho-isomer line (616?523)0.74 cm?1 measured by four-photon spectroscopy increases by factor of ~3.5 after cavitation treatment of distilled water. Moreover, the proton density measured by NMR spectroscopy in the same sample grows on ~17%. We have suggested that the enrichment of the distilled water by ortho-H2O molecules was achieved due to cavitation bubbles collapse when the water passes through the supercritical state.  相似文献   

8.
To explore the potential of high-resolution magic angle spinning (HRMAS) 1H nuclear magnetic resonance (NMR) spectroscopy for differentiation and metabolite characterization of hepatocellular carcinoma (HCC) and colorectal liver metastases (CRLM), we prospectively included 21 pathologically confirmed malignant hepatic tumors (8 HCC and 13 CRLM) and 26 non-tumorous hepatic parenchyma from 26 patients who underwent hepatic tumor resection. Using intact tissue samples obtained during surgery, HRMAS 1H NMR spectroscopy was performed at 11.7 T. All observable metabolite signals were acquired using a water-presaturated standard one-dimensional Carr–Purcell–Meiboom–Gill sequence. Metabolomic profiles contributing to the differentiation of HCC and CRLM and of each tumor and non-tumorous hepatic parenchyma were represented by orthogonal partial least squares discriminant analysis (OPLS-DA) and loading plots. Metabolite intensity normalized by total spectral intensities in both tumors was compared using student’s t tests. OPLS-DA and loading plots demonstrated good separation between tumors and non-tumorous hepatic parenchyma. The metabolomic characteristics of HCC showed separation from those of CRLMs according to OPLS-DA. Compared with CRLM, HCC showed significantly elevated levels of glucose (P < 0.01) and sn-Glycero-3-phosphocholine (P < 0.01), and decreased levels of hypoxanthine (P = 0.04). HCC and CRLM could be differentiated by the metabolic profile using HRMAS 1H NMR spectroscopy.  相似文献   

9.
Single crystals of a novel compound, bis(ethyltriphenylphosphonium) tetrabromomanganate(II) dihydrate (BTP-Mn) were grown by solution growth-slow evaporation technique from aqueous solution of the compound at ambient temperature. The grown crystals were characterized by elemental analysis, powder X-ray diffraction, thermal analysis, nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infra-red spectroscopy (FTIR) techniques. The chemical composition of the compound was revealed by elemental analysis and its crystallinity was confirmed by powder X-ray diffraction. Thermal analysis confirmed that the compound was stable up to 125°C. The various kinds of protons and carbons present in the compound were confirmed by 1H NMR and 13C NMR technique respectively and the presence of phosphorous was confirmed by 31P NMR spectrum in the compound. The modes of vibration of different molecular groups present in the compound were identified by FTIR spectral analysis. The second harmonic generation behaviour was tested by Nd:YAG laser source.  相似文献   

10.
Abstract

Dehydration of oriented sections of a radiation-damaged titanite crystal, CaTiSiO5, at temperatures up to 1500K was analysed using infrared spectroscopy. The IR spectra of the untreated sample show only a very weak orientational dependence. The absence of sharp absorption peaks at wave number near 3486 cm?1 in metamict titanite shows that the local environmental configurations of OH species in the metamict titanite differ strongly from that of crystalline titanite. The OH spectra of radiation-damaged titanite can be decomposed into two components: the first component shows anisotropic and sharp spectral features while the second component consists of a broad spectral feature like those observed in disordered silica glasses. It is proposed that the first component is related to the crystalline part of the titanite sample while the second is from the defected and disordered part which suffered strong radiation damage. With increasing annealing temperature, a decrease in the broad absorption between 2500 and 3200 cm?1 is accompanied by a recovery of sharp IR bands near 3486 cm?1 which display the same orientational dependence as undamaged single crystals. Annealing the sample at 1000K leads to the line profiles and orientational dependence of the main OH stretching bands near 3486cm?1 that are virtually identical with those of crystalline, undamaged titanites. At temperatures above 1500 K, the crystal starts to melt and the orientational dependence of the IR absorption is destroyed. The recrystallization processes are quantified and discussed in terms of a percolation behaviour of amorphous and crystalline titanite. It is proposed that hydrogen transport is strongly enhanced during recrystallization.  相似文献   

11.
A version of ortho-para diagnostics of water at room temperature, based on the combined use of optical and NMR spectroscopy of water dissolved in carbon tetrachloride in a monomeric form, is proposed. Within this study, the capabilities of spectral diagnostics of water with natural ortho-para composition (ortho/para = 3/1) were fully realized. An experimental technique for preparing large amounts of carbon tetrachloride dried to a high degree (water: CCl4 < 1: 105) was worked out. The results of successful NMR measurements of the ortho-isomer concentration will be published later.  相似文献   

12.
A quinoxaline‐2,3‐dione derivative was synthesized, and its chemical structure was determined through spectral analysis. Alkylation of this compound under phase transfer catalysis (PTC) conditions yielded monoalkylated and diakylated adducts. The monolalkylation process was shown to be regioselective occurring on the quinoxalic nitrogen atom rather than on its pyrazolic analogue. The full characterization of the synthesized compounds was studied by concerted use of NMR and MS techniques. Assignments of proton and carbon atoms were achieved through analysis of the 1D 1H and 13C NMR spectra combined with homo‐ and hetero-nuclear 2D NMR experiments. Determination of the alkylation site was achieved through long‐range proton–carbon coupling correlations spectroscopy.  相似文献   

13.
While 15N solid-state NMR has proven to be very advantageous for the development of structural biological methods, 13C spectroscopy has increased sensitivity and spectral dispersion. However, large natural abundance signals and homonuclear dipolar interactions pose significant problems. Here we have used a pair of 13C-labeled sites in a lipid-solubilized polypeptide to show the selective polarization can be used in combination with spin diffusion to achieve simplified spectra. Both unoriented and oriented samples have been used, with the latter providing a well-resolved homonuclear dipolar splitting.  相似文献   

14.
The diffusion of gallium in liquid Ga‐Sn alloy embedded into different porous silica matrices was studied by NMR. Spin relaxation was measured for two gallium isotopes, 71Ga and 69Ga, at two magnetic fields. Pronounced rise of quadrupole contribution to relaxation was observed for the nanostructured alloy which increased with decreasing the pore size. The correlation time of atomic mobility was evaluated and found to be much larger than in the relevant bulk melt which evidenced a pronounced diffusion slowdown in the Ga‐Sn alloy under nanoconfinement. It is shown that the diffusion was slower by a factor of 30 for the alloy within 7 nm pores. The spectral densities of electric field gradients at zero frequency were found to double for the finest pores. The Knight shift was found to decrease but slightly for the nanostructured alloy.  相似文献   

15.
A comprehensive analysis of solutions of 5‐fluorouracil (5FU) in water and an organic medium (dimethylsulfoxide, DMSO) was carried out using quantum chemical methods and nuclear magnetic resonance (NMR) spectroscopy. The details of anionic form generation in the solution of 5FU with an equimolar amount of potassium hydroxide were studied by 13С, 1Н, 15N and 19F NMR. Interpretation of NMR spectral data was carried out using quantum chemical calculations at the TPSSTPSS/6‐311+G(d,p) level of theory. Specific solvation of 5FU and 1THF‐5FU was modeled in approximation using the five‐water cluster model and solvate complex including two DMSO molecules. It was established that in an alkaline medium in DMSO 5FU occurred mainly as a type of an anion with a deprotonation on N(1) position of a pyrimidine ring whereas in water alkaline solution—as a mixture of two anions with a deprotonation on N(1) and N(3) positions with a predominant content of the latter form. For the quantitative definition of the deprotonation forms of 5FU the technique based on the data of theoretical and experimental NMR 13C spectroscopy, tested on a model compound 1‐(tetrahydrofuranyl‐2)‐5‐fluoro‐pyrimidinedione‐2,4 (tegafur, THF‐5FU), was offered. The N(3) anion was found from spectral data to be more thermodynamically stable than the N(1) anion by 2.40 kJ mol?1 (calculated value 2.24 kJ mol?1) in an alkaline–water solution. Both alkaline–water and alkaline–DMSO solutions of THF‐5FU (THF‐5FU/KOH = 1/1) were characterized by the ratio of the equilibrium concentrations of the anion and diketo‐tautomer as 9:1 and 4.3:1, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Near Infrared spectroscopy (NIR) is the most widely used technique for the analysis of major biochemical constituents in food products. The Mid-infrared range spectroscopy is also being more and more studied in the field of food analysis. This range was primarily applied to qualitative analysis of food components, but with the advent of new techniques such as Attenuated Total Reflectance (ATR) together with the possibility of combination with powerful micro-computers, MIR is now more and more used for quantitative analysis.

In addition to baseline deformations, interference by unwanted compounds are major sources of problems that are encountered in analyses.

We have previously proposed (Cadet et al., 1991) the use of multidimensional statistical analysis combined with Mid-FTIR spectroscopy for the prediction of sucrose concentrations in biological solutions containing three sugars: sucrose, fructose and glucose.

In this paper, a least-squares method has been used to assess the elimination of the component spectra associated to the fructose (the unwanted components were first orthogonal zed and normalized by the Gram-Schmidt orthogonalization method). This procedure permitted the automatic subtraction of discriminant spectral patterns representative of fructose concentration before application of Principal Component Analysis (PCA) and Principal Component Regression (PCR). PCA was applied independently before and after spectral correction of the collections. It is found that when the factorial maps obtained before and after correction are compared, the elimination procedure improves significantly the classification of solutions according to their sucrose content. However the bias and standard deviation (SD) values that are associated with the sucrose content predicted values are not influenced by the correction method used: bias and SD are 3.62×10?2 and 3.097×10?1 before correction and after correction they were respectively 3.60×10?2 and 3.104×10?1. This could be explained by the fact that the presence of fructose in solution does not interfere with caracteristic absorption bands of sucrose and that sucrose and fructose concentrations are strongly correlated. The absorbtions bands of the spectral representation of the principal component, which is identified to be that associated with sucrose, are identical before and after correction.  相似文献   

17.
The interaction between Li salts {LiTf (Tf = CF3SO3) and LiNTf2 (NTf2 = N(SO2CF3)2)} with surface modified alumina particles (basic, neutral or acidic) is investigated employing a range of advanced solid state NMR methodologies. Utilizing 7Li MAS NMR, a new signal – in addition to the signal of the pure salt – could be identified in the composite samples, increasing with increasing basicity of the alumina surface. Employing 7Li–{1H} CPMAS NMR and 7Li–{1H}–CPMAS–{27Al} REAPDOR NMR spectroscopy, this new signal could be unequivocally assigned to an alumina-surface bound Li species. For the anions, 19F MAS NMR spectra clearly prove the existence of new anion sites. Employing 19F–{7Li} REDOR spectroscopy and 19F–{27Al} TRAPDOR NMR spectroscopy, the identified signals could be safely assigned to anions within the pristine Li salt and anions attached to the alumina surface. These results present direct evidence for the anion???alumina surface and cation???alumina surface interaction, suggested by several authors to aid in the interpretation of the effect of the ceramic additive on the ionic conductivity.  相似文献   

18.
Little is known about129Xe NMR spectral features and spin-lattice relaxation behavior, and the dynamics of xenon atoms, for xenon adsorbed on solid surfaces at cryogenic temperatures (≤77 K), where exchange with gas-phase atoms is not a significant complication. We report129Xe NMR experiments at 9,4 T that provide such information for xenon adsorbed onto the hydroxylated surface of a number of microporous silica samples at 77 K. A convenient design for these cryogenic experiments is described. Dynamics of surface-adsorbed xenon atoms on the time scale of seconds can be observed by129Xe NMR hole-burning experiments; much slower dynamics occurring over hours and days are evidenced from changes with time of the129Xe NMR chemical shifts. The peak maxima occur in the region ca. 180–316 ppm, considerably downfield of129Xe shifts previously reported on surfaces at higher temperatures, and closer to the shift of xenon bulk solid (316.4±1 ppm). The129Xe spin-lattice relaxation timesT 1 range over five orders of magnitude; possible explanations for both nonexponential relaxation behavior and extremely shortT 1 values (35 ms) are discussed. Preliminary131Xe and1H NMR results are presented, as well as a method for greatly increasing the sensitivity of129Xe NMR detection at low temperatures by using closely-spaced trains of rf pulses.  相似文献   

19.
The composition of essential oil from Agastache rugosa (Fish. et Mey) O.Kuntze was studied by 1H and 13C NMR spectroscopy. Essential oil was isolated from the aerial part of plants growing in the Central Botanical Garden of the NAS of Belarus during flowering and fruiting. The oil chemical composition was found to depend little on the sampling time. It was shown that NMR spectroscopy could be successfully used to both monitor the content of the hepatotoxic substance (pulegone) and characterize the quality and authenticity of essential oils.  相似文献   

20.
Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the T 2 times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor. 13C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance 13C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号