首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measure the distribution of intensity of microwave radiation transmitted through absorbing random waveguides of lengths L up to localization length xi . For large intensity values the distribution is given by a negative stretched exponential to the 1/2 power, in agreement with predictions by Nieuwenhuizen and van Rossum [Phys. Rev. Lett. 74, 2674 (1995)] for diffusing waves in nonabsorbing samples, as opposed to a negative exponential given by Rayleigh statistics. The intensity distribution is well described by a transform derived by Kogan and Kaveh [Phys. Rev. B 52, R3813 (1995)] of the measured distribution of total transmission.  相似文献   

2.
It is shown that it is now possible to include van der Waals (vdW) interactions via a nonempirical implementation of density functional (DF) theory to describe the correlation energy in electronic structure calculations on infinite systems of no particular symmetry. The vdW-DF theory [Phys. Rev. Lett. 92, 246401 (2004)] is applied to the adsorption of benzene and naphthalene on an infinite sheet of graphite, as well as the binding between two graphite sheets. A comparison with recent thermal-desorption data [Phys. Rev. B 69, 155406 (2004)] shows great promise for the vdW-DF method.  相似文献   

3.
[1]V.D.Burkert,Phys.Lett.B 72 (1997) 109. [2]S.Capstick and W.Roberts,Prog.Part.Nucl.Phys.45 (2000) S241,and references therein. [3]B.S.Zou,Nucl.Phys.A 675 (2000) 167c; B.S.Zou,Nucl.Phys.A 684 (2001) 330; BES Collaboration (J.Z.Bai,et al.) Phys.Lett.B 510 (2001) 75; BES Collaboration (M.Ablikim,et al.),hep-ex/0405030. [4]R.Sinha and Susumu Okubo,Phys.Rev.D 30 (1984)2333. [5]W.H.Liang,P.N.Shen,B.S.Zou,and A.Faessler,Euro.Phys.J A 21 (2004) 487. [6]Particle Data Group,Euro.Phys.J.C 15 (2000) 1. [7]K.Tsushima,A.Sibrtsev,and A.W.Thomas,Phys.Lett.B 390 (1997) 29. [8]J.Kogut,Rev.Mod.Phys.51 (1979) 659; Rev.Mod.Phys.55 (1983) 775. [9]Q.Haider and L.C.Liu,J.Phys.G 22 (1996) 1187; L.C.Liu and W.X.Ma,J.Phys.G 26 (2000) L59. [10]V.G.J.Stoks,R.A.M.Klomp,C.P.F.Terheggen,and J.J.de Swart,Phys.Rev.C 49 (1994) 2950. [11]H.Haberzettl,C.Bennhold,T.Mart,and T.Feuster,Phys.Rev.C 58 (1998) R40. [12]Y.Oh,A.I.Titov,and T.-S.H.Lee,Phys.Rev.C 63(2001) 25201.  相似文献   

4.
Sonoluminescence spectra of the heavy rare gases are calculated by combining the Hilgenfeldt et al. model of sonoluminescence [Phys. Fluids 11, 1318 (1999)] with quantum line-shape calculations of electron-neutral-atom bremsstrahlung spectra [L. Frommhold, Phys. Rev. E 58, 1899 (1998)]. Good agreement between theoretical and experimental spectra is obtained by choosing values of the ambient radius R0 and acoustic pressure amplitude P(a) that are compatible with diffusive equilibrium calculations.  相似文献   

5.
Optical gap solitons refer to nonlinear waves propagating in optical fibers whose linear refractive index has a periodic variation. Stationary gap solitons came to light first in 1987 [Chen and Mills, Phys. Rev. Lett. 58, 160 (1987)]; two years later, they re-emerge in Christodoulides and Joseph [Phys. Rev. Lett. 62, 1746 (1989)] and are first extended to a more general traveling wave form in Aceves and Wabnitz [Phys. Lett. A 141, 37 (1989)]. But it was not until seven years later, that the first experimental demonstration [Eggleton et al., Phys. Rev. Lett. 76, 1627 (1996); J. Opt. Soc. Am. B 14, 2980 (1997)] was reported. Since then, there has been an increase in the study of the dynamics and applications of such solitons. This paper is a brief survey of some of the ongoing and future research on optical gap solitons. (c) 2000 American Institute of Physics.  相似文献   

6.
[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D 51 (1995) 1125;[Erratum-ibid.D 55 (1997) 5853][arXiv:hep-ph/9407339]; J.Boltz,P.Kroll,and G.A.Schulre,Phys.Lett.B 392 (1997) 198; J.Boltz,P.Kroll,and G.A.Schulre,Phys.J.C 2 (1998) 705. [2]S.M.Wong,Nucl.Phys.A 674 (2000) 185; S.M.Wong,Eur.Phys.J.C 14 (2000) 643. [3]J.Z.Bai,Y.Ban,J.G.Bian,et al.,Phys.Rev.D 67 (2003)112001. [4]M.Jacob and G.C.Wick,Ann.Phys.7 (1959) 404. [5]S.U.Chung,Phys.Rev.D 48 (1993) 1225; S.U.Chung,Phys.Rev.D 57 (1998) 431; B.S.Zou and D.V.Bugg,Eur.Phys.J.A 16 (2003) 537. [6]Particle Data Group,Phys.Lett.B 592 (2004) pp.924-966. [7]M.A.Doncheski,et al.,Phys.Rev.D 42 (1990) 2293; E.Eichten,et al.,Phys.Rev.D 21 (1980) 203; K.J.Sebastian,Phys.Rev.D 26 (1982) 2295; G.Hardekopf and J.Sucher,Phys.Rev.D 25 (1982) 2938; R.McClary and N.Byers,Phys.Rev.D 28 (1983) 1692; P.Moxhay and J.L.Rosner,Phys.Rev.D 28 (1983) 1132. [8]B.S.Zou and F.Hussain,Phys.Rev.C 67 (2003) 015204.  相似文献   

7.
[1]R. Casalbuoani, A. Deandrea, and M. Oertel, JHEP 032(2004) 0402. [2]G. Hooft, In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge (1997). [3]J. Belazey, Searches for New Physics at Hadron Coliders,Northern Illinois University (2005). [4]N. Arkani-hamed, A.G. Cohen, and H. Georgi, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239]. [5]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001 [hep-ph/0207243]. [6]N. Arkani-hamed, A.G. Cohen, E. Katz, and A.E. Nelson,JHEP 0207 (2002) 304 [hep-ph/0206021]. [7]N. Arkani-hamed, A.G. Cohen, E. Katz, A.E. Nelson, T.Gregoire, and J. G. Wacker, JHEP 0208 (2002) 021 [hepph/0206020]. [8]T. Gregoire and J.G. Wacker, JHEP 0208 (2002) 019[hep-ph/0206023]. [9]For a recent review, see e.g., M. Schmaltz, Nucl. Phys. B (Proc. Suppl.) 117 (2003) 40. [10]N. Arkani-hamed, A.G. Cohen, T. Gregoire, and J.G.Jacker, JHEP 0208 (2002) 020 [hep-ph/0202089]. [11]or a recent review, see e.g., M. Schmaltz, Nucl. Phys.Proc. Suppl. 117 (2003) 40 [hep-ph/0210415]. [12]E. Katz, J. Lee, A.E. Nelson, and D.G. Walker, hepph/0312287. [13]M. Beneke, I. Efthymiopoulos, M.L. Mangano, et al., hepph/0003033. [14]D.O. Carlson and C.-P. Yuan, hep-ph/9211289. [15]R. Frey, D. Gerdes, and J. Jaros, hep-ph/9704243. [16]G. Eilam, J.L. Hewett, and A. Soni, Phys. Rev. D 44(1991) 1473; W.S. Hou, Phys. Lett. B 296 (1992) 179; K.Agashe and M. Graesser, Phys. Rev. D 54 (1996) 4445;M. Hosch, K. Whisnant, and B.L. Young, Phys. Rev. D56 (1997) 5725. [17]C.S. Li, R.J. Oakes, and J.M. Yang, Phys. Rev. D 49(1994) 293, Erratum-ibid. D 56 (1997) 3156; G. Couture,C. Hamzaoui, and H. Koenig, Phys. Rev. D 52 (1995)1713; G. Couture, M. Frank, and H. Koenig, Phys. Rev.D 56 (1997) 4213; G.M. de Divitiis, et al., Nucl. Phys. B 504 (1997) 45. [18]B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435(1998) 401. [19]B. Mele, hep-ph/0003064. [20]J.M. Yang and C.S. Li, Phys. Rev. D 49 (1994) 3412,Erratum, ibid. D 51 (1995) 3974; J.G. Inglada, hepph/9906517. [21]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 41 (2004)241. [22]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 40 (2003)171. [23]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, Phys.Rev. D 67 (2003) 095004. [24]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001. [25]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, hepph/0302188. [26]A.J. Buras, A. Poschenrieder, and S. Uhlig, hepph/0410309. [27]S. Eidelman, et al., Phys. Lett. B 592 (2004) 1. [28]F. Legerlehner, DESY 01-029, hep-ph/0105283.  相似文献   

8.
Recently, a scheme based on the method of weak measurements to register the trajectories of photons passing through a nested Mach–Zehnder interferometer was proposed [L. Vaidman, Phys. Rev. A 87, 052104 (2013)] and then realized [A. Danan, D. Farfurnik, S. Bar-Ad, et al., Phys. Rev. Lett. 111, 240402 (2013)]. Interpreting the results of the experiment, the authors concluded that “the photons do not always follow continuous trajectories.” It is shown in this work that these results can be easily and clearly explained in terms of traditional classical electrodynamics or quantum mechanics implying the continuity of all possible paths of photons. Consequently, a new concept of disconnected trajectories proposed by the authors of work [Phys. Rev. Lett. 111, 240402 (2013)] is unnecessary.  相似文献   

9.
[1]J.Gasser,H.Leutwyler,and M.E.Sainio,Phys.Lett.B 253 (1991) 252. [2]John Ellis,Eur.Phys.J.A 24S2 (2005) 3,[arXive:hepph/0411369]. [3]T.Inoue,V.E.Lyubovitskij,Th.Gutsche,and Amand Faessler,Phys.Rev.C 69 (2004) 035207,[arXive:hepph/0311275]. [4]M.M.Pavan,I.I.Strakovsky,R.L.Workman,and R.A.Arndt,PiN Newslett.16 (2002) 110,[arXive:hepph/0111066]. [5]V.E.Lyubovitskij,Th.Gutsche,Amand Faessler,and E.G.Drukarev,Phys.Rev.D 63 (2001) 054026,[arXive:hep-ph/0009341]. [6]S.D.Bass,Phys.Lett.B 329 (1994) 358,[arXive:hepph/9404294]. [7]Marc Knecht,PiN Newslett.15 (1999) 108,[arXive:hepph/9912443]. [8]P.Schweitzer,Phys.Rev.D 69 (2004) 034003. [9]B.C.Lehnhart,J.Gegelia,and S.Scherer,J.Phys.G 31(2005) 89,[arXive:hep-ph/0412092]. [10]P.J.Ellis and K.Torikoshi,Phys.Rev.C 61 (1999)015205. [11]Gerald E.Hite,William B.Kaufmann,and Richard J.Jacob,Phys.Rev.C 71 (2005) 065201. [12]S.Weinberg,Physica A 96 (1979) 327. [13]J.Gasser and H.Leutwyler,Nucl.Phys.B 250 (1985)465. [14]J.Gasser,M.E.Sainio,and A.Svarc,Nucl.Phys.B 307(1988) 779. [15]P.Papazoglou,D.Zschiesche,S.Schramm,J.SchaffnerBielich,H.St(o)cker,and W.Greiner,Phys.Rev.C 59(1999) 411. [16]T.Fuchs and J.Gegelia,Phys.Rev.D 68 (2003) 056005.  相似文献   

10.
A recent theoretical analysis [B. V. R. Tata and N. Ise, Phys. Rev. E 58, 2237 (1998)] of interactions and phase transitions in charge-stabilized colloidal suspensions made reference to our previously published measurements [J. C. Crocker and D. G. Grier, Phys. Rev. Lett. 73, 352 (1994); 77, 1897 (1996); A. E. Larson and D. G. Grier, Nature (London) 385, 230 (1997)] of colloidal interactions. Tata and Ise claim that our measurements cannot distinguish between predictions of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory and those of the competing theory due to Sogami and Ise (SI). We demonstrate that the DLVO theory accurately describes the measured interactions between isolated pairs of like-charged spheres, while the SI theory fails both quantitatively and qualitatively to describe our data.  相似文献   

11.
Experience has shown that theoretically determined lifetimes of bulk states of hot electrons in real metals agree quantitatively with the experimental ones, if theory fully takes into account the crystal structure and many-body effects of the investigated metal, i.e., if the Dyson equation is solved at the ab initio level and the effective electron–electron interaction is determined beyond the plasmon-pole approximation. Therefore the hitherto invoked transport effect [Knoesel et al.: Phys. Rev. B 57, 12812 (1998)] does not seem to exist. In this paper we show that likewise neither virtual states [Hertel: et al. Phys. Rev. Lett. 76, 535 (1996)] nor damped band-gap states [Ogawa: et al.: Phys. Rev. B 55, 10869 (1997)] exist, but that the hitherto unexplained d-band catastrophe in Cu [Cu(111), Cu(110)] can be naturally resolved by the concept of the transient exciton. This is a new quasiparticle in metals, which owes its existence to the dynamical character of dielectric screening at the microscopic level. This means that excitons, though they do not exist under stationary conditions, can be observed under ultrafast experimental conditions. Received: 30 March 2000 / Accepted: 2 September 2000 / Published online: 12 October 2000  相似文献   

12.
[1]J. Nagamatsu, N. Nakagava, T. Muranaka, Y. Zenitani,and J. Akimitsu, Nature 410 (2001) 63. [2]C. Buzea and T. Yamashita, Supercond. Sci. Techn. 14(2001) R115. [3]S. Budko, G. Lapertot, C. Petrovic, C.E. Gunningham, N.Anderson, and P.C. Canfield, Phys. Rev. Lett. 86 (2001)1877. [4]H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, Phys. Rev. Lett. 87 (2001) 127001. [5]J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov,and L.L. Boyer, Phys. Rev. Lett. 87 (2001) 4656. [6]A. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87(2001) 087005. [7]X.K. Chen, M.J. Konstantinovich, J.C. Irwin, D.D.Lawrie, and J.P. Frank, Phys. Rev. Lett. 87 (2001)157002. [8]H. Giublio, D. Roditchev, W. Sacks, R. Lamy, D.X.Thanh, J. Kleins, S. Miraglia, D. Fruchart, J. Markus,and P. Monod, Phys. Rev. Lett. 87 (2001) 177008. [9]F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and J.D. Jorgensen, Phys. Rev. Lett. 87 (2001) 04700. [10]S.V. Shulga, S.-L. Drechsler, H. Echrig, H. Rosner, and W. Pickett, Cond-mat/0103154 (2001). [11]A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y.Kong, O.K. Andersen, B.J. Gibson, K. Ahn, and R.K.Kremer, J. Phys. Condens. Matter 14 (2002) 1353. [12]H. Doh, M. Sigrist, B.K. Chao, and Sung-Ik Lee, Phys.Rev. Lett. 85 (1999) 5350. [13]I.N. Askerzade, N. Guclu, and A. Gencer, Supercond. Sci.Techn. 15 (2002) L13. [14]I.N. Askerzade, N. Guclu, A. Gencer, and A. Kiliq, Supercond. Sci. Techn. 15 (2002) L17. [15]I.N. Askerzade and A. Gencer, J. Phys. Soc. Jpn. 71(2002) 1637. [16]I.N. Askerzade, Physica C 397 (2003) 99. [17]V.V. Anshukova, B.M. Bulychev, A.I. Golovashkin, L.I.Ivanova, A.A. Minakov, and A.P. Rusakov, Phys. Solid State 45 (2003) 1207. [18]A.A. Abrikosov, Fundamentals of the Theory of Metals,North-Holland, Amsterdam (1988). [19]M.N. Kunchur, S.I. Lee, and W.N. Kang, Phys. Rev. B 68 (2003) 064516.  相似文献   

13.
Ullrich B  Xi H 《Optics letters》2010,35(23):3910-3912
Recent work by Pejova [Mater. Res. Bull. 43, 2887 (2008)] showed that the widely cited classical photocurrent theory of DeVore [Phys. Rev. 102, 86 (1956)] does not necessarily apply for photocurrent experiments carried out on thin-film semiconductors. In this Letter, we theoretically and experimentally justify the successful use of the photocurrent model published by Bouchenaki et al. [J. Opt. Soc. Am. B 8, 691 (1991)].  相似文献   

14.
Recent scaling results for the ac conductivity of ionic glasses by Roling et al. [Phys. Rev. Lett. 78, 2160 (1997)] and Sidebottom [Phys. Rev. Lett. 82, 3653 (1999)] are discussed. We prove that Sidebottom's version of scaling is completely general. A new approximation to the universal ac conductivity arising in the extreme disorder limit of the symmetric hopping model, the "diffusion cluster approximation," is presented and compared to computer simulations and experiments.  相似文献   

15.
[1]M.Alford,K.Rajagopal,and F.Wilczek,Phys.Lett.B 422 (1998) 247; Nucl.Phys.B 537 (1999) 443. [2]M.Gyulassy and L.McLerran,arXiv:nucl-th/0405013;E.V.Shuryak,arXiv:hep-ph/0405066. [3]K.Rajagopal and F.Wilczek,hep-ph/0011333. [4]M.Alford,Chris Kouvaris,and K.Rajagopal,hepph/0406137. [5]Y.Nambu and G.Jona-Lasinio,Phys.Rev.122 (1961)345. [6]R.T.Cahill and C.D.Roberts,Phys.Rev.D 32 (1985)2419. [7]R.T.Cahill and Susan M.Ganner,hep-ph/9812491. [8]A.W.Steiner,S.Reddy,and M.Prakash,Phys.Rev.D 66 (2002) 094007. [9]P.Amore,M.C.Birse,J.A.McGovern,and N.R.Walet,Phys.Rev.D 65 (2002) 074005. [10]M.Alford and K.Rajagopal,JHEP 0206 (2002) 031. [11]Xiao-Fu Li,Yu-Xin Liu,Hong-Shi Zong,and En-GuangZhao,Phys.Rev.C 58 (1998) 1195. [12]H.Reinhardt,Phys.Lett.B 244 (1990) 2. [13]Steven Weinberg,The Quantum Theory of Fields,Vol.2,Cambridge University Press,Cambridge (1996) p.348.  相似文献   

16.
[1]C.O.Weiss and R.Vilaseca,Dynamics of Lasers,VCH,Weinheim (1991); Instabilities and Chaos in Quantum Optics,eds.F.T.Arecchi and R.G.Harrison,Springer-Verlag,Berlin (1987). [2]H.Haken,Phys.Lett.A 53 (1975) 77. [3]Ju Rui,Huang Hong-Bin,Yang Peng,Xie Xia,and Zhao Huan,Commun.Theor.Phys.(Beijing,China) 44 (2005) 65; Ju Rui,Zhang Ya-Jun,Huang Hong-Bin,and Zhao Huan,Acta Phys.Sin.53 (2004) 2191 (in Chinese). [4]C.Z.Ning and H.Haken,Z.Phys.B 77 (1989) 247; B 77 (1989) 157; B 77 (1989) 163; J.Zakrenwski and M.Lewenstein,Phys.Rev.A 45 (1992) 2057. [5]G.J.deValearcel,E.Roldan,and R.Vilaseca,Phys.Rev.A 45 (1992) R2674; Phys.Rev.A 49 (1994) 1243. [6]X.Xie,H.B.Huang,F.Qian,Y.J.Zhang,P.Yang,and G.X.Qi,Commun.Theor.Phys.(Beijing,China) 46 (2006) 1042. [7]X.L.Deng,H.Q.Ma,B.D.Chen,and H.B.Huang,Phys.Lett.A 290 (2001) 77. [8]C.Benkert,and M.O.Scully,Phys.Rev.A 42 (1990) 2817. [9]M.O.Scully and M.S.Zubairy,Quantum Optics,Cambridge University Press,Cambridge (1997).  相似文献   

17.
In our work [Phys. Rev. E 58, R5245 (1998)] we introduced a dynamic phenomenological approach to model propagation of localized wetting fronts in porous media. Gray and Miller in their Comment [Phys. Rev. E 61, 2150 (2000)] criticize our approach on several issues. The main criticism addresses the problem of mass conservation in our model. In this Reply we argue that their criticism is incorrect.  相似文献   

18.
The roughening of interfaces moving in inhomogeneous media is investigated by numerical integration of the phenomenological stochastic differential equation proposed by Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889 (1986)] with quenched noise (QKPZ) [Phys. Rev. Lett. 74, 920 (1995)]. We express the evolution equations for the mean height and the roughness into two contributions: the local and the lateral one in order to compare them with the local and the lateral contributions obtained for the directed percolation depinning models (DPD) introduced independently by Tang and Leschhorn [Phys. Rev A 45, R8309 (1992)] and Buldyrev et al. [Phys. Rev A 45, R8313 (1992)]. These models are classified in the same universality class of the QKPZ although the mechanisms of growth are quite different. In the DPD models the lateral contribution is a coupled effect of the competition between the local growth and the lateral one. In these models the lateral contribution leads to an increasing of the roughness near the criticality while in the QKPZ equation this contribution always flattens the roughness. Received 7 April 2000 and Received in final form 7 March 2001  相似文献   

19.
Some MIT researchers [Phys. Rev. A 75, 042327 (2007)] have recently claimed that their implementation of the Slutsky-Brandt attack [Phys. Rev. A 57, 2383 (1998); Phys. Rev. A 71, 042312 (2005)] to the BB84 quantum-key-distribution (QKD) protocol puts the security of this protocol “to the test” by simulating “the most powerful individual-photon attack” [Phys. Rev. A 73, 012315 (2006)]. A related unfortunate news feature by a scientific journal [G. Brumfiel, Quantum cryptography is hacked, News @ Nature (april 2007); Nature 447, 372 (2007)] has spurred some concern in the QKD community and among the general public by misinterpreting the implications of this work. The present article proves the existence of a stronger individual attack on QKD protocols with encrypted error correction, for which tight bounds are shown, and clarifies why the claims of the news feature incorrectly suggest a contradiction with the established “old-style” theory of BB84 individual attacks. The full implementation of a quantum cryptographic protocol includes a reconciliation and a privacy-amplification stage, whose choice alters in general both the maximum extractable secret and the optimal eavesdropping attack. The authors of [Phys. Rev. A 75, 042327 (2007)] are concerned only with the error-free part of the so-called sifted string, and do not consider faulty bits, which, in the version of their protocol, are discarded. When using the provably superior reconciliation approach of encrypted error correction (instead of error discard), the Slutsky-Brandt attack is no more optimal and does not “threaten” the security bound derived by Lütkenhaus [Phys. Rev. A 59, 3301 (1999)]. It is shown that the method of Slutsky and collaborators [Phys. Rev. A 57, 2383 (1998)] can be adapted to reconciliation with error correction, and that the optimal entangling probe can be explicitly found. Moreover, this attack fills Lütkenhaus bound, proving that it is tight (a fact which was not previously known).  相似文献   

20.
Investigation of thin metallic film properties by means of picosecond ultrasonics [C. Thomsen et al., Phys. Rev. Lett. 53, 989 (1984)] has been under the scope of several studies. Generation of longitudinal and shear waves [T. Pézeril et al., Phys. Rev. B 73, 132301 (2006); O. Matsuda et al., Phys. Rev. Lett. 93, 095501 (2004)] with a wave vector normal to the film free surface has been demonstrated. Such measurements cannot provide complete information about properties of anisotropic films. Extreme focusing of a laser pump beam (≈0.5 μm) on the sample surface has recently allowed us to provide evidence of picosecond acoustic diffraction in thin metallic films (≈1 μm) [C. Rossignol et al., Phys. Rev. Lett. 94, 166106 (2005)]. The resulting longitudinal and shear wavefronts propagate at group velocity through the bulk of the film. To interpret the received signals, source directivity diagrams are calculated taking into account material anisotropy, optical penetration, and laser beam width on the sample surface. It is shown that acoustic diffraction increases with optical penetration, so competing with the increasing of directivity caused by beam width. Reflection with mode conversion at the film-substrate interface is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号