首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract— The recent results of stationary-state and time-resolved absorption, fluorescence and Raman spectroscopies of some typical carotenoids are summarized. Theoretical analyses of carotenoid singlet states and of carotenoid-to-bacteriochlorophyll singlet-energy transfer are also included. On the bases of the energies, the lifetimes and other properties of singlet excited states of the carotenoids in solution and bound to the light-harvesting complexes, the energetics and the dynamics of the light-harvesting function in purple photosynthetic bacteria are discussed with emphasis on the 2Ag and Bu+ states.  相似文献   

2.
Solvent-induced spectral shifts of the four C40 carotenoids, beta-carotene, echinenone, canthaxantin, and astaxanthin, have been studied in supercritical CO2 and CF3H. In situ absorption spectroscopic analysis was used to determine the maximum peak position of the electronic transitions from the ground state (1(1)Ag-) to the S2 state (1(1)Bu+) of the carotenoids. The medium polarizability function, R(n) = (n2 - 1)/(n2 + 2) of the refractive index of the solvent was varied over the range R(n) = 0.08-0.14, by changing the pressure of CO2 or CF3H between 90 and 300 bar at the temperature 308 K. For all the carotenoids studied here, a significant hypsochromic shift of ca. 20-30 nm was observed in supercritical fluids as compared to that in nonpolar liquids. The spectral shifts in supercritical fluids were compared with those in liquids and showed a clear linear dependence on the medium polarizability. The temperature-dependent shift of the absorption maxima was less significant. Interestingly, there was almost no difference in the energetic position of the absorption maxima in supercritical CO2 and CF3H at a given R(n) value. This is in contrast to previous extrapolations from studies in liquids at larger R(n) values, which yielded different slopes of the R(n)-dependent spectral shifts for polar and nonpolar solvents toward the gas-phase limit of R(n) = 0. The current experimental results in the gas-to-liquid range show that the polarity of the solvent has only a minor influence on the 1(1)Ag- --> 1(1)Bu+ transition energy in the region of low R(n). We also obtain more reliable extrapolations of this 0-0 transition energy to the gas-phase limit nu(0-0)(gas-phase) approximately (23,000 +/- 120) cm(-1) for beta-carotene.  相似文献   

3.
Abstract— When TCA-denatured rhodopsin was frozen in liquid nitrogen, Λmax was markedly shifted to longer wavelengths as the concentration of TCA increased. After TCA denaturation, species specific absorption disappeared and the absorption maxima of the squid pigments became identical with those of corresponding pigments of octopus.
In solutions at 5° the bathochromic shift of Λmax of TCA denatured rhodopsin was observed at higher concentrations of TCA than in the frozen state. Λmax of N-retinylidene-butylamine (NRB) was also displaced towards longer wavelengths with increasing concentrations of TCA. This bathochromic shift was enhanced by freezing. The mode of the bathochromic shift of Λmax provoked by TCA was very similar both in the cases of denatured rhodopsin and of NRB. The absorption spectrum of NRB was identical in shape with that of TCA-denatured rhodopsin, as the half-band widths of both materials were about 5500 cm-1 in the liquid state and 5000 cm-1 in the frozen state. Λmax of retinal and NRB were red shifted in polar and polarizable solvents.
It was concluded that the strong acidity and the relatively large polarizability of TCA are responsible for the bathochromic shift of Λmax of the Schiff base in TCA-denatured rhodopsin.  相似文献   

4.
Abstract— Polarized absorption spectra were obtained for a single crystal of methylbacteriophorbide a (MeBPhide a). The Qy band is red-shifted ∽ 1660 cm-1 (∽ 110 nm) relative to MeBPhide a in a CH2Cl2/benzene solution. This is equivalent to the largest red shifts observed for in vivo bacteriochlorophyll a. The Soret band exhibits a smaller red shift and a significant reduction in intensity, and the Qx band is not observed. The crystal spectra are qualitatively similar to spectra reported for several other aggregated (bacterio)chlorophyll and bacteriopheophytin systems. Since crystalline MeBPhide a contains no Mg, water or hydrogen bonding (Barkigia etal. , 1981), these results demonstrate that the spectral changes associated with the aggregation of photosynthetic chromophores can arise solely from IT-IT interactions between macrocycles.  相似文献   

5.
Abstract— The absorption and fluorescence spectra of indole-4-carboxylic acid in various solvents have indicated that the -COOH group is more planar with respect to the indole ring in the first excited singlet state (S1) than in the ground (S0) state. Relatively large Stokes' shifts indicate that polarisability and dipole moment of the molecule are increased predominantly upon excitation. Prototropic reactions in the S0 and S1 states are the same. The -COO- and -COOH+2 groups are not coplanar in the S0, but coplanar in the S1 state. pH-dependent fluorescence spectra have revealed that both protonation and deprotonation of the -COOH group increase the basicity of the molecule upon excitation.  相似文献   

6.
Photophysical Properties of the Cationic Form of Neutral Red   总被引:1,自引:0,他引:1  
Abstract— Photophysical properties of the cationic form of neutral red (NRH+), a phenazine-based dye of biological importance, have been investigated in several protic and aprotic solvents using optical absorption, steady-state and time-resolved fluorescence and picosecond laser flash photolysis techniques. Absorption and fluorescence characteristics of the dye in protic solvents indicate the existence of intermolecular hydrogen bonding between the NRH+ and solvent molecules in the ground state as well as in the excited state. Measurements of the fluorescence lifetime in normal and heavy water also support the formation of intermolecular hydrogen bonding. Time-resolved transient absorption spectra obtained in the picosecond laser flash photolysis experiments show only the absorption band due to the Sn← S1 absorption. The picosecond transient absorption results do not indicate any spectral shifts attributable to the hydrogen bond formation dynamics between the excited NRH+ and the protic solvent molecules. It is inferred that the hydrogen bonding dynamics are much faster than the time resolution of our picosecond setup (∼35 ps).  相似文献   

7.
Abstract— The retinylidene Schiff base derivative of seven lysine containing peptides have been prepared in order to investigate solvent and neighboring group effects, on the absorption maximum of the protonated Schiff base chromophore. The peptides studied are Boc-Aib-Lys-Aib-OMe ( 1 ), Boc-Ala-Aib-Lys-OMe ( 2 ), Boc-Ala-Aib-Lys-Aib-OMe ( 3 ), Boc-Aib-Asp-Aib-Aib-Lys-Aib-OMe ( 4 ), Boc-Aib-Asp-Aib-Ala-Aib-Lys-Aib-OMe ( 5 ), Boc-Lys-Val-Gly-Phe-OMe ( 6 ) and Boc-Ser-Ala-Lys-Val-Gly-Phe-OMe ( 7 ). In all cases protonation shifts the absorption maxima to the red by 3150–8450 cm-1. For peptides 1–3 the protonation shifts are significantly larger in nonhydrogen bonding solvents like CHCl3 or CH2Cl2 as compared to hydrogen bonding solvents like CH3OH. The presence of a proximal Asp residue in 4 and 5 results in pronounced blue shift of the absorption maximum of the protonated Schiff base in CHCl3, relative to peptides lacking this residue. Peptides 6 and 7 represent small segments of the bacteriorhodopsin sequence in the vicinity of Lys-216. The presence of Ser reduces the magnitude of the protonation shift.  相似文献   

8.
Time-resolved, low-temperature resonance Raman spectra of triplet states of the carotenoids specifically present in bacterial reaction centers in a strained cis conformation have been obtained, thus demonstrating the possibility of studying intermediate transient states of these structures using resonance Raman spectroscopy. Resonance Raman spectra of triplet cis spheroidene and cis methoxyneurosporene present in reaction centers of Rhodopseudomonas spheroides, (strains 2.4.1. and Ga, respectively) exhibit marked differences with those of triplet, all- trans carotenoids previously studied in vitro. These differences, together with the frequency shifts measured for the v 1 modes, indicate that triplet carotenoids bound to reaction centers retain a cis conformation, and that probably no isomerization occurs to all- trans carotenoids upon T ← S0 excitation. Pi electron distributions along the polyene backbone are probably less regular in the triplet state than in the singlet ground state, although probably not to the extent suggested by previous theoretical calculations. The apparently anomalous behaviour of the v 2 bands of all- trans carotenoids upon T ← S0 excitation is shown to result largely from the actual complexity of this region of the Raman spectra, together with a weak participation of the v c—–c internal coordinate in the corresponding modes. Finally, the Raman scattering efficiency of triplet spheroidene bound to reaction centers is lower than that of the singlet, ground state form, under equivalent excitation conditions.  相似文献   

9.
Abstract— Absorption and fluorescence spectra of 5'-deoxypyridoxal (DPL) in various pure solvents and mixtures were recorded both at room temperature and over the range10–65°C. The areas under the absorption bands were analyzed to obtain the mole fraction (fN, fz) of two tautomers (the zwitterionic, Z, and neutral, N, forms) in the ground state. The following spectral parameters were determined from the fluorescence spectra: Stokes shift (Δ v ), fluorescence quantum yield of the neutral form (QN), fluorescence ratio of the neutral to the zwitterionic form (øNZ) and the rate constant of tautomerization ( k 1) from Z to N in the excited state. Some of these parameters (fN, Δ v , QN, k 1) were found to depend on the proton donor character of the solvent, whereas others (øNZ) depended on its dipole moment. Thus, the absorption and fluorescence spectra of DPL allow one to obtain information on the polarity and the concentration of –OH groups on its environment.  相似文献   

10.
Abstract. The quantum yields of HCI (φHC1) formation have been measured for the photolysis of N -methyldiphenylamine (MeDPA), triphenylamine (TPA) and diphenylamine (DPA) in the presence of CCl4 in polar solvents. The quantum yields of N-methylcarbazole formation (φmφca) have also been determined for the system MeDPA-CCl4. With increasing CCl4 concentration, φHCl increases as φMeCA decreases, and φHCl reaches maximum values 2.7 at 1 M CCl4. Using laser photolysis, transient spectra have been recorded for MeDPA in the absence and presence of CCl4 in polar and non-polar solvents, and for TPA. Transient absorption due to the triplet states and photocyclization products (without CCU), exciplexes, the (C6H5)2 NCHi radical, the MeDPA+ cation radical, the (TPA+., CCl4) ion pair, and the TPA+ cation radical have been identified. The mechanistic implications of these results are discussed.  相似文献   

11.
Ultra violet absorption spectra of o-methylacetophenone, o-fluoroacetophenone and o-hydroxyacetophenone solutions in different solvents are recorded in the region 200-350 nm at room temperature. Excited state dipole moments for three (pi* <-- pi) transitions of the benzene ring for solutions in non-polar and polar solvents are estimated using solvato-chromic shift method [Delta nu against f(epsilon, n)]. The results show that two types of shifts are observed red and blue shifts. The dipole moment values obtained on excitation by red shifted bands in non-polar solvents are much higher than their counterparts both in the ground state and those of the solutions in polar solvents. Those obtained on excitation by blue shifted bands have lower values than ground state, some with same direction and others of reverse direction in both non-polar and polar solvents.  相似文献   

12.
Abstract— The lowest-lying allowed UV transition in p -aminobenzoic acid (PABA) is assigned Γ→1La based on quantitative absorption and fluorescence studies, as well as semiempirical PM3 multielec-tron configuration interaction calculations. The oscillator strengths, fluorescence quantum efficiencies and lifetimes are reported for PABA in several polar, nonpolar, protic and aprotic solvents (aerated) at 296 K. Reasonable agreement is found between the observed radiative rate constant and that calculated from the absorption and fluorescence spectra. Shifts in the absorption and fluorescence spectra in aprotic solvents are analyzed in terms of the Onsager reaction field model; results are consistent with an increase in dipole moment of ca 4 D between the relaxed S0 and S1, states. No evidence is found for the emission from the amino-twisted form of PABA in all solvents studied although calculations show that the amino-twisted S, state is highly polar, but higher in energy by ca 35 kJ/mol ( in vacuo ). The fluorescence efficiency is excitation wavelength independent in both methylcyclohexane and water. The temperature dependence of the nonradiative rate constant (from S1) was studied in several solvents. Nonradiative decay may be due to intersystem crossing, which would be fast enough to compete with thermally activated intramolecular NH2 twisting. The phosphorescence spectrum and lifetime obtained in an EPA glass at 77 K are reported, and the triplet energy of PABA is estimated.  相似文献   

13.
Solvatochromic shifts of pyrene (Py) and naphthalene (Np) excimers were obtained in polar and non-polar solvents. The observed shifts for both excimers are explained by changes in the polarizability between the excimer and the dissociative ground state. The magnitudes of the shifts in the pyrene excimer are larger, indicating that the pyrene excimer is more polarizable than the naphthalene excimer.  相似文献   

14.
Abstract— Triplet-and singlet-related photoprocesses of pyrene-1-aldehyde (PA) in various solvents have been investigated in detail using 337.1 and 355 nm laser flash photolysis in conjunction with time-correlated determination of fluorescence lifetimes (τF) and steady-state photochemical and absorption-emission spectral measurements. In benzene, the lowest triplet of PA (43 < ET < 46 kcal/mol) has a lifetime of about 50 µs (τT) and displays the absorption maximum at 443 nm with a maximum extinction coefficient (εmax) of 21000 M -1cm-1; the corresponding ketyl radical has a sharp absorption maximum at 428 nm (εmax≥ 25000 M -1cm-1). The quantum yields (φT) of lowest triplet occupation are high in nonprotic solvents (0.6–0.8), decrease in protic solvents (alcohols) as the polarity of the latter is increased, and maintain a complementary relationship with the quantum yields (φF) of fluorescence. Quantum yields (φPC) of loss of PA due to photoreactions in some solvents have also been determined under conditions of steady irradiation at 366 nm; φPC is in the range 0.1–0.2 in electron-rich olefinic solvents such as cyclohexene and tetramethylethylene. These results concerning τF, τT, φF. φT and φPC as well as the effects of 1,2,4-trimethoxybenzene and 2,5-dimethyl-2,4-hexadiene as quenchers for fluorescence, triplet yield, and photochemistry are discussed in the light of possible state orders for PA in polar and nonpolar environments.  相似文献   

15.
A quantitative study has been made of the solvent effects on the fluorescence properties of 1- and 3-methyl indole, with the aim of further understanding the origin of the unusually large Stokes shift in polar solvents. For the derivatives considered here the fluorescence transition probability is decreased in solvents of moderate and high polarities, and the spectrum shifts to the red. The data (in two-component, solute and solvent, systems) can be interpreted on the basis of the stabilisation, by solvent-solute relaxation, of a state with an increased charge-transfer character, relative to the initially excited state. Å consideration of the decay data for other indole derivatives suggests that this state has its origin in the 1L4 state (S2 in non-polar media). Thus we conclude that the appropriate label of the fluorescent state of many substituted indoles in polar solvents is 1La/CT. This is consistent with the observed solvent, temperature, time and substituent dependence of the decay kinetics of these derivatives.  相似文献   

16.
Abstract— The synthesis, absorption and emission properties of erythro (e) and threo (t) Na-acetyl-1-pyrenylalanyl-1-methyltryptophan methylester (APTE) are reported. From the dependency of the exciplex emission maximum on the solvent polarity, the exciplex dipole moment of erythro and threo APTE were calculated. The evolution of the ratio of the quantum yield of exciplex emission and the quantum yield of emission from the locally excited state is correlated with solvent polarity and with the tendency of the solvent to interact with the peptide chain through hydrogen bonding. It is shown that solvents, inert towards the peptide function, shift the equilibrium between the two ground state conformations towards C7, in which an exciplex geometry can be reached. Hydrogen accepting solvents shift the conformational equilibrium towards C5, which cannot form an exciplex directly within the lifetime of excited pyrene.  相似文献   

17.
The excited state (S1) dipole moment of m-AMSA (1), an acridine derivative with antitumor activity, was determined from solvatochromic shifts of the lowest energy absorption band in several organic solvents. The effect of the solute shape and the values of polarizability on the determined change of dipole moment between ground and excited state was discussed. The dipole moments in S0 and S1 state were calculated in gas phase with semiempirical quantum-chemical and DFT and CIS methods and in solvents with SM5.4A solvation model and compared with values obtained experimentally. All the results show that the dipole moment of compound 1 in the excited state is higher than that in the ground state. These methods quite well predict the values of Deltamicro between two states of an investigated compound.  相似文献   

18.
Abstract— The two main primary photoprocesses (electron ejection and H-atom release) for indole, 5-methoxyindole and N-methylindole in various polar and nonpolar solvents were studied as a function of the excitation energy and were correlated with the corresponding fluorescence quantum yields. In hydrocarbon solvents, N–H bond cleavage is the main primary photoprocess from the 1Bb band of the substrates with the exception of N-methylindole. In alcohols, both processes are of negligible importance. Hydrated electrons (eaq) are ejected from the relaxed singlet states of all three compounds in aqueous solutions with a similar yield for excitation at 280 and 254 nm (1La and 1Lb states). The yield increases when the excitation is into the 1Bb band. The quantum yields of the two primary processes from the higher excited states are generally lower than the fraction of molecules not converting to the fluorescent state. This is explained by an efficient back reaction in competition with a thermally activated radical release from an intermediate state or radical pair formed from the S2 (1Bb) state. The non-occurrence of a photoionization energy threshold is discussed.  相似文献   

19.
Many of the spectroscopic features and photophysical properties of carotenoids are explained using a three-state model in which the strong visible absorption of the molecules is associated with an S0 (1(1)Ag-) --> S2 (1(1)Bu+) transition, and the lowest lying singlet state, S1 (2(1)Ag-), is a state into which absorption from the ground state is forbidden by symmetry. However, semiempirical and ab initio quantum calculations have suggested additional excited singlet states may lie either between or in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+), and some ultrafast spectroscopic studies have reported evidence for these states. One such state, denoted S*, has been implicated as an intermediate in the depopulation of S2 (1(1)Bu+) and as a pathway for the formation of carotenoid triplet states in light-harvesting complexes. In this work, we present the results of an ultrafast, time-resolved spectroscopic investigation of a series of open-chain carotenoids derived from photosynthetic bacteria and systematically increasing in their number of pi-electron carbon-carbon double bonds (n). The molecules are neurosporene (n = 9), spheroidene (n = 10), rhodopin glucoside (n = 11), rhodovibrin (n = 12), and spirilloxanthin (n = 13). The molecules were studied in acetone and CS2 solvents at room temperature. These experiments explore the effect of solvent polarity and polarizability on the spectroscopic and kinetic behavior of the molecules. The molecules were also studied in ether/isopentane/ethanol (EPA) glasses at 77 K, in which the spectral resolution is greatly enhanced. Analysis of the data using global fitting techniques has revealed the ultrafast dynamics of the excited states and spectral changes associated with their decay, including spectroscopic features not previously reported. The data are consistent with S* being identified with a twisted conformational structure, the yield of which is increased in molecules having longer pi-electron conjugations. In particular, for the longest molecule in the series, spirilloxanthin, the experiments and a detailed quantum computational analysis reveal the presence of two S* states associated with relaxed S1 (2(1)Ag-) conformations involving nearly planar 6-s-cis and 6-s-trans geometries. We propose that in polar solvents, the ground state of spirilloxanthin takes on a corkscrew conformation that generates a net solute dipole moment while decreasing the cavity formation energy. Upon excitation and relaxation into the S1 (2(1)Ag-) state, the polyene unravels and flattens into a more planar geometry with comparable populations of 6-s-trans and 6-s-cis conformations.  相似文献   

20.
Abstract— This work presents a calculation of the large bathochromic shift observed in the ultraviolet spectrum of aromatic hydrocarbons (such as pyrene and 3,4 benzopyrene) when they are stacked with nucleotides and polynucleotides. For this, an estimation of the increase of molecular polarizability in the excited states is necessary. This increase is responsible for the fact that the stabilization of the stacked hydrocarbon by dispersive interactions with base pairs becomes stronger in the excited state. The calculated increases of stabilization energies are in satisfactory agreement with the observed spectral shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号