首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 758 毫秒
1.
A. Dahshan   《Journal of Non》2008,354(26):3034-3039
Thermal stability and crystallization kinetics of As14Ge14Se72−xSbx (where x = 3, 6, 9, 12 and 15 at.%) glasses are studied by the differential scanning calorimetry. The values of the glass transition temperature (Tg) and the peak temperature of crystallization (Tp) are found to be dependent on heating rate and antimony content. From the heating rate dependence of Tg and Tp the values of the activation energy for glass transition (Et) and the activation energy for crystallization (Ec) are evaluated and their composition dependence discussed. Crystallization studies have been made under non-isothermal conditions with the samples heated at several uniform rates. Using a recent analysis developed for non-isothermal crystallization studies, information on some aspects of the crystallization process has been obtained. The stability calculations emphasized that the thermal stability decreases with increasing the Sb content.  相似文献   

2.
The glass formation region in the ternary ZnO―Bi2O3―WO3 system is determined by melt quenching technique (cooling rates 101-102 K/s). New original glasses are obtained in a narrow concentration range with high WO3 content (60-75 mol%). Homogeneous glasses of the composition (100 − x)[0.2ZnO·0.3Bi2O3·0.5WO3]xMoO3, were obtained between 20 and 60 mol% MoO3. Characterization of the amorphous samples was made by x-ray diffraction (XRD), differential thermal analysis (DTA) and infrared spectroscopy (IR). The thermal stability of glasses decreases with the increasing of MoO3 content. The glass transition temperature, Tg, varies between 340-480 °C, while the crystallization temperature, Tx, varies between 388-531 °C. The tungstate glasses possess higher crystallization temperature (Tx over 500 °C) in comparison with the other vanadate and molybdate non-traditional glasses. The glass network is realized by transformation of three-dimensional structure of WO3 into a layered one, consisting mainly of WO6 units. We supposed that the network of quaternary glasses is built up by MoO4, MoO6 and WO6. At low concentration ZnO and Bi2O3 facilitate the disorder in the supercooled melts, while at high concentration stimulate crystallization processes. These oxides belong to the intermediate ones.  相似文献   

3.
The work concerns influence of rare earth elements on crystallization of Fe82Nb2B14RE2 (RE = Y, Gd, Tb, and Dy) group of amorphous alloys. The samples were obtained by typical melt spinning technique. The crystallization studies were carried out with the use of (i) differential scanning calorimetry (DSC) in the temperature range from 300 K to 850 K with different heating rates and (ii) standard magnetic balance (Faraday type). The crystalline structure before and after the first stage of crystallization were checked by XRD and HRTEM techniques. The measurements allow the determining crystallization temperatures, activation energies of crystallization, average size of nanograins formed during crystallization and the Curie temperatures. In the paper all the obtained results are widely discussed in the context of different rare earth alloying additions.  相似文献   

4.
We focus on a recently suggested approach to the calculation of critical cooling rates for glass formation. It is a “random parameterization” method that is guided by a limited number of isothermal scanning calorimetry experiments. However, several assumptions have been made in its derivation that may not mirror the actual crystallization behavior of most supercooled liquids, which may jeopardize the estimation of glass forming ability. We evaluate those assumptions and the applicability of the method is tested for lithium disilicate glass (which displays moderate internal nucleation rates) and dibarium titanium silicate glass (which displays very high internal nucleation rates, similar to those of metallic glasses). Both glasses nucleate homogeneously and exhibit polymorphic crystallization. Our calculations show that some overlooked variables, such as the sample geometry, nucleation induction-times, surface crystallization and the breakdown of the Stokes–Einstein/Eyring equation, have significant roles on the calculated time–temperature–transformation curves during heating experiments. We demonstrate that the proposed random parameterization method can only be used when a glass forming liquid that undergoes internal crystallization is cooled from above its liquidus to various test temperatures. If the sample undergoes predominant surface crystallization or if it is heated to the test temperature several corrections must be made.  相似文献   

5.
This research aims to investigate and compare the structural and the morphological properties of both lithium disilicate glasses doped with copper oxide and their glass–ceramic derivatives. Density measurements were measured for all samples by Archimedes method at room temperature. Differential scanning calorimetric analysis was used to determine the glass transition temperature (Tg) and crystallization temperature (Tc) for all glasses. The glass transition temperature was observed to decrease with increasing CuO concentration indicating the formation of non-bridging oxygen bonds in the glass network. X-ray analysis patterns reveal the appearance of crystalline lithium metasilicate phase as the main phase within the glass–ceramic derivatives, and their crystallite sizes were observed to decrease as the CuO increased. Experimental infrared absorption data indicate the existence of characteristic vibrational bands due to structural building SiO4 units in resemblance to the same vibrations observed from traditional crystalline silicates. Scanning electron microscopic investigations show the vitreous nature for lithium disilicate glasses and the distinct crystalline morphological features for the corresponding glass–ceramic derivatives.  相似文献   

6.
We optimize the composition of tellurite glass for the manufacture of photonic crystal fibers with a large spectrum of transparency. The glasses, synthesized in four and five component (TeO2-WO3-Na2O-Nb2O5 and TeO2-WO3-PbO-Na2O-Nb2O5) oxide systems with variable contents of WO3 (5-38 mol%) and PbO (0-18 mol%), are designed and manufactured, and the transmission properties of the obtained glasses for the spectral range of 200 nm-7 μm have been determined. Thermal expansion coefficients and glass characteristic temperatures are determined by the dilatometer and Leitz heat microscope methods. Differential Scanning Calorimetry (DSC) measurements as well as crystallization tests by isothermal heat treatment are used to measure the thermal stability of the glasses and their ability to crystallize. Diffractive X-ray (XRD) measurements are used to determine the crystalline phases of the glass samples and the glasses with the highest resistance to recrystallization during thermal treatment were selected and used for the manufacture of photonic crystal fibers.  相似文献   

7.
X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V2O5 was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO2 mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V4+/Vtotal ranges from 8 to 35%, while Cr3+/Crtotal can range from 15 to 100% and even to population distributions including Cr2+. As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V4+ populations increase after initial bubbling, but as bubbling time increases, V4+ populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr2+ populations.  相似文献   

8.
《Journal of Non》2007,353(18-21):1723-1731
Bulk metallic glasses developed in last 15 years represent a new class of amorphous metallic alloys. These multi-component metallic alloys can be obtained at relatively low cooling rates, which allow the production of large-scale materials by conventional casting processes. Furthermore, bulk metallic glasses show a glass transition well below the crystallization temperature enabling hot deformation, but also to investigate the glass transition phenomenon in a metallic system. The thermal behavior of Zr- and Pd-based bulk metallic glasses was studied by in situ X-ray diffraction at elevated temperatures. The temperature dependence of the X-ray structure factor of the glassy state can be well described by the Debye theory. At the caloric glass transition the temperature dependence of the structure alters, pointing to a continuous development of structural changes in the liquid state. The short-range order of the glass, of the super-cooled liquid, and of the equilibrium melt is found to be very similar. The existence of complex chemically ordered clusters in the melt is supposed to be related to the high glass-forming ability of the alloys. The microstructure of metallic glasses consisting of elements with negative enthalpy of mixing is homogeneous at dimensions above 1 nm. Phase separation in the liquid state appears in metallic systems with large positive enthalpy of mixing of the elements like Nb–Y. Thermodynamic calculations of the Ni–Nb–Y phase diagram show that the miscibility gap of the monotectic binary Nb–Y system extends into the ternary up to large Ni content. Experimental evidence of the phase separation in ternary Ni–Nb–Y melts is obtained by in situ X-ray diffraction at elevated temperatures and differential scanning calorimetry. The phase separated melt can be frozen into a two-phase amorphous metallic alloy by rapid quenching from the liquid. The microstructure depends on the chemical composition and consists of two amorphous regions, one Nb-enriched and the other Y-enriched, with a size distribution from several nanometers up to micrometer dimension. The experimental results confirm the close relationship between the structure of metallic glasses and the corresponding under-cooled liquids.  相似文献   

9.
The positron lifetime dependence on the annealing temperature has been studied for two transition metal-metalloid glasses (FeNi-based and Co-based). Small variations of the lifetime observed after annealing below crystallization temperature are attributed to elimination of the structural defects inherent in the as-quenched metallic glasses. More abrupt changes at higher temperatures are ascribed to crystallization processes which lead to polycrystalline phases. Differences in positron lifetime between annealed FeNi-based and Co-based metallic glasses are discussed.  相似文献   

10.
J. Rocca  M. Erazú  M. Fontana  B. Arcondo 《Journal of Non》2009,355(37-42):2068-2073
One of most important properties of some tellurium-based chalcogenide glasses is the optical and electrical switching between two states: the glass and the crystalline state. The understanding in these systems of the glass to crystal transition and its transformation kinetics is essential for their application in non-volatile memories. GeTeSb and GeTe amorphous samples of compositions close to the eutectic point Ge15Te85 were obtained by rapid solidification from the liquid state employing melt spinning technique. The glass forming ability of this system, for this cooling technique, is restricted to a small composition range nearby the binary eutectic. The crystallization kinetics of the samples was studied by means of differential scanning calorimetry (DSC) under both isothermal and continuous heating regimes. The quenched samples and the crystallization products have been characterized by X-ray diffraction with Cu(Kα) radiation. The crystallization temperature, activation energy, crystallization enthalpy and the dependence of these properties on concentration are reported. The crystallization study of Ge15Te85 glasses shows: a primary crystallization of Te superimposed with a secondary crystallization of GeTe. The addition of Sb (5 at.%) to the eutectic point Ge15Te85 modifies this behavior: the crystallization of Ge13Sb5Te82 glasses consists on the crystallization of Te and Ge2Sb2Te5. The crystallization of the ternary glasses was modeled.  相似文献   

11.
The crystallization kinetics of the (1 − x)TeO2-xWO3 (where x = 0.10, 0.15, and 0.20, in molar ratio) glass system was studied by non-isothermal methods using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. DSC measurements were performed at different heating rates to study crystallization kinetics of the first crystallization reactions of the glasses. XRD analysis of tungsten-tellurite glasses heat-treated above the first crystallization temperatures revealed that the first crystallization peaks attributed to the α-TeO2 and γ-TeO2 crystalline phases for 0.90TeO2-0.10WO3 and 0.85TeO2-0.15WO3 samples and α-TeO2 and WO3 crystalline phases for the 0.80TeO2-0.20WO3 sample. Avrami constants, n, calculated from Ozawa equation, were found between 1.14 and 1.44. The activation energies, EA, for the first crystallization reactions were determined by using the modified Kissinger equation as 379 kJ/mol, 288.1 kJ/mol and 228.8 kJ/mol, for 0.90TeO2-0.10WO3, 0.85TeO2-0.15WO3 and 0.80TeO2-0.20WO3 glasses, respectively.  相似文献   

12.
The crystallization process affects solid properties through the crystal structure and morphology established during the transition process. An important aspect of the crystallization process is its kinetics, both from the fundamental point of view of amorphous material as well as the modeling and phase transition. In the present research work, non-isothermal crystallization data in the form of heat flow vs. temperature curves has been studied by using some well known models for amorphous Ga10Se87Pb3 and Ga10Se84Pb6 chalcogenide glasses, prepared by the melt quenching technique. The glass transition phenomena and crystallization of these glasses have been studied by using non-isothermal differential scanning calorimetery (DSC) measurements at constant heating rates of 5, 10, 15, 20, 25 and 30 K/min. The glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) were determined from DSC thermograms. The dependence of Tg and Tc on the heating rate was used to determine different crystallization parameters such as the order parameter (n), the glass transition energy (ΔEg) and the crystallization activation energy (ΔEc). The results of crystallization were discussed on the basis of different models such as Kissinger's approach and the modification for non-isothermal crystallization in addition to Johnson, Mehl, Ozawa and Avrami.  相似文献   

13.
We describe a new method for the study of both optical and crystallization homogeneity of partially crystallized glasses or glass–ceramics at different spatial scales (from 100 mm to 1 μm). The method relies on the association of different techniques, such as interferometry, optical microscopy and differential scanning calorimetry. The method was tested to probe the optical and crystallization homogeneity of both as-made and UV-exposed, and pre-nucleated samples of a photo-thermo-refractive (PTR) glass. This study demonstrates that pure UV-exposure did not lead to an improvement of the crystallization homogeneity of the glass. However, the benefit of associating UV-exposure and nucleation thermal treatment was clear. These combined treatments permit to homogenize the crystal distribution in PTR glass at millimeter and micron scale. This result is of major commercial interest.  相似文献   

14.
Hua Yu  Kaidi Zhou  Jie Song  Lijuan Zhao 《Journal of Non》2008,354(30):3649-3652
The oxyfluoride glass ceramics are important up-conversion luminescent materials. Er3+/Yb3+-codoped transparent oxyfluoride glasses were prepared by melt-quenching and subsequently heat-treated at different times and temperatures, and the crystallization process of fluoride nanocrystals from the glass was investigated. X-ray diffraction (XRD) and fluorescence spectra investigations reveal that fluoride nanocrystals are distributed homogeneously among the glassy matrix for the sample doped with Er3+/Yb3+. The crystallization process indicates that heat-treatment temperature influences the size of fluoride nanocrystals, while heat-treatment time influences their concentration. Moreover, the red emission intensities increase due to the incorporation of Er3+/Yb3+ into the fluoride nanocrystals under different heat-treatment methods, which are studied by fluorescence spectra.  相似文献   

15.
Microporous glass ceramics belonging to the CaO-TiO2-P2O5 system were prepared with the assumption of a 2:1 mole ratio for β-Ca3(PO4)2:CaTi4(PO4)6, the anticipated crystalline phases in the end product. The glasses formulated according to the above composition were melted and cast onto a steel mold and were crystallized to glass ceramics containing the above phases. Dilatometric/differential thermal analysis (DTA) techniques were utilized to determine the appropriate phase separation-nucleation and crystallization temperatures. The crystalline products and resulting microstructures in various stages of process were determined and observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). By leaching the resulting glass ceramics in HCl, β-Ca3(PO4)2 was dissolved out leaving a porous skeleton of CaTi4(PO4)6. It was found that the volume porosity, specific surface area and mean pore diameter of microporous glass ceramics can be managed through the proper selection of heat treatment conditions. In the optimized conditions for fabricating glass ceramics of minimum mean pore size the values of 41 ± 4%, 26 ± 3 m2/g and 14.3 ± 2 nm were obtained for porosity, surface area and pore diameter respectively.  相似文献   

16.
Manuela Reben 《Journal of Non》2011,357(14):2653-2657
A thulium (Tm 3+) doped oxyfluoride glass ceramic containing SrF2 nanocrystals has been presented. Transparent glass ceramic was obtained by heat treating the glass from the SiO2-Al2O3-ZnO-SrF2 system at the first crystallization temperature. Cerammization of glass was studied by DTA/DSC, XRD and SEM methods. It has been found that nanocrystallization of SrF2 strongly depends on the ratio between the components and amount of SrF2. Moreover the rare earth dopant Tm3+ influenced on the thermal properties of glass. The formation of SrF2 nanocrystals in glass ceramic was confirmed by X-ray diffraction. X-ray diffraction analysis of the transparent glass ceramic revealed that the SrF2 nanocrystals are precipitated in the glass matrix. Analysis of the local atomic interactions in the structure of oxyfluoride glass has been used to explain the course of the crystallization.  相似文献   

17.
In the present work, thermal properties of GeSe2–As2Se3–CdSe glasses were investigated via DSC measurements. The dependences of glass transition temperature and thermal stability on glass composition were discussed. XRD measurement was also performed to validate the effect of cadmium on the thermal properties of glasses. The calculated Avrami exponent was used to demonstrate the three-dimensional growth of crystals in the glass matrices. The crystallization kinetics for the glasses was studied by using the modified Kissinger and Ozawa equations.  相似文献   

18.
This work studied the properties of glasses with the molar composition 63.8SiO2-(11.6-x)Na2O-(0.7 + x)B2O3-19.2CaO-3MgO-1.5Al2O3-0.2P2O5, in which x = 0, 1, 2, 3. These glasses are of interest for the development of slowly dissolving fibers to be incorporated in composites for medical applications. The thermal properties were recorded using hot stage microscopy, differential thermal analysis, and heat treatments in the range of 800°-1000 °C. The glass crystallization behavior was determined based on calculated values of the activation energy of crystallization and the Johnson-Mehl-Avrami exponent. The structural units in the glass network were identified using infrared spectroscopy. Finally, in vitro dissolution was tested in SBF solution.The addition of B2O3 increased the glass transition temperature and reduced the working temperature. When heat treated at 900 °C, the glass with the smallest amount of B2O3 formed two crystalline phases: magnesium silicate MgSiO3 and wollastonite CaSiO3. In the other compositions, only CaSiO3 was observed after heat treatment at 950 °C. All the glasses crystallized preferentially from the surface. Changes in the liquidus and crystallization temperatures were related to changes in the glass structure. The formation of [BO3] units led to glasses with improved resistance to crystallization and decreased liquidus temperature. In the glasses with 2.7 and 3.7 mol% B2O3, [BO3] units were transformed into [BO4] units. The formation of [BO4] led to an increase in fragility and a decrease in resistance to crystallization. All the glasses dissolved slowly in simulated body fluid.  相似文献   

19.
Hu Hefang  J.D. Mackenzie   《Journal of Non》1986,80(1-3):495-502
The effect of oxide impurity on the physical properties of 62ZrF4---8LaF3---30BaF2 (mol.%) glass was studied by equimolecular substitution of BaO for BaF2. It is shown that the oxide impurity decreases the infrared transparency beyond 6 μm, shifts the transmission cut-off wavelength to higher frequencies and causes an additional absorption shoulder at 1350 cm−1. The oxide impurity also increases the glass transition temperature, the crystallization temperature and the viscosity of the melt. The additional infrared absorption of oxide impurity in the fluorozirconate glasses results from the multiphonon process of the vibration of F---Zr---O bonds at 680 cm−1.  相似文献   

20.
Bulk glasses of the system Ga20SbxS80−x (x = 5 and 40) were prepared for the first time by the known melt quenching technique. Non-isothermal differential scanning calorimetric (DSC) measurements of as-quenched Ga20SbxS80−x (x = 5 and 40) chalcogenide glasses reveal that the characteristic temperatures e.g. the glass transition temperature (Tg), the temperature corresponding to the maximum crystallization rate (Tp) recorded in the temperature range 400-650 K for x = 5 and 480-660 K for x = 40 are strongly dependent on heating rate and Sb content. Upon heating, these glasses show a single glass transition temperature (Tg) and double crystallization temperatures (Tp1 and Tp2) for x = 5 which overlapped and appear as a single crystallization peak (Tp) for x = 40. The activation energies of crystallization Ec were evaluated by three different methods. The crystallization data were examined in terms of recent analysis developed for non-isothermal conditions. The crystalline phases resulting from (DSC) have been identified using X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号