首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports about measurements of the contact area of agricultuural tires in a soil bin. Four tires of the dimensions 12.5/80-18, 13.6–28, 16.9–34 and 16.9–26 were tested on a soft sandy loam. Because the existing models for predicting the footprint are complicated, a simplified model has been established, yielding good results. Measured different contact areas of all four tires are nearly constant related to wheel load except for a small increase at higher loads. Using rated loads and applying the appropriate inflation pressure, the ground pressure of a group of similar tires in loose sandy loam is independent of the tire dimensions. Measured soil compaction under at tire a various wheel loads is compared with results obtained by a mathematical model.  相似文献   

2.
Tyre traffic over soil causes non-uniform ground pressures across the tyre width and along the soil–tyre contact area. The objective of this paper was to obtain in the topsoil the shape, magnitudes, distribution and transmission in depth of the ground pressures from a finite element model of soil compaction. The influence of tyre inflation pressure, tyre load and soil water content over the pressures propagation in the soil was analysed. The model shows how to low inflation pressure the tyre carcass supports most of the total load and the biggest peak pressures are distributed in the tyre axes when it traffics over firm soil. For high inflation pressure the incremented stiff causes that pressure is distributed with parabolic shape. In wet soil the inflation pressure does not influence on the ground pressure distribution, this depends only on the tyre load. The inflation pressure and tyre load changed the shape of the vertical pressures distribution on the surface of a hard dry soil, but these variables did not affect the distribution of vertical stresses in a soft wet soil or below a depth of 0.15 m.  相似文献   

3.
The vertical deflection, contact area, and ground pressure of three agricultural tractor rear tyres (11.2–28, 12.4–28, 13.6–28) were investigated at different normal loads and inflation pressures on a firm surface. A linear mathematical model was evolved to establish relationship among different parameters. The model could be used to represent tyre behaviour under varying operational parameters.  相似文献   

4.
A mathematical formulation is given and a solution is found to the quasistatic contact problem of thermoelasticity for a rigid heat-conducting punch moving over an elastic layer with fixed base. The interaction is accompanied by heating due to frictional forces obeying Amonton’s law. The problem is reduced to a system of integral equations with time-varying limits of integration. The structure of these equations depends on the type of thermal and physical conditions on the contact surface. An algorithm is proposed for the numerical solution of this kind of equations. The variation in the contact pressure and contact area with time is studied __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 12, pp. 35–46, December 2005.  相似文献   

5.
In the contact of a cone with a rough plane the mean pressure in the contact area is constant. In particular, above a critical ratio of the opening angle of the cone with respect to the rms gradient of surface roughness, the mean pressure is the same of that for nominally flat contact, no matter how large is the normal load. We introduce a new variable, namely, the local density of contact area, whose integral over the smooth nominal contact domain gives the real contact area. The results given by the theoretical model agree with the numerical simulations of the same problem presented in the paper.  相似文献   

6.
The contact pressure, contact area, contact width, contact length and vertical deflection of a pneumatic tire on a rigid surface depend on tire size, load and inflation pressure and can be derived by means of mathematical expressions. These expressions have been widely utilized and checked in practice for different tires.  相似文献   

7.
A mathematical formulation for the contact of rough surfaces is presented. The derivation of the contact model is facilitated through the definition of plastic asperities that are assumed to be embedded at a critical depth within the actual surface asperities. The surface asperities are assumed to deform elastically whereas the plastic asperities experience only plastic deformation. The deformation of plastic asperities is made to obey the law of conservation of volume. It is believed that the proposed model is advantageous since (a) it provides a more accurate account of elastic-plastic behavior of surfaces in contact and (b) it is applicable to model formulations that involve asperity shoulder-to-shoulder contact. Comparison of numerical results for estimating true contact area and contact force using the proposed model and the earlier methods suggest that the proposed approach provides a more realistic prediction of elastic-plastic contact behavior.  相似文献   

8.
In the area of homogeneous, isotropic, linear elastic rough surface normal contact, many classic statistical models have been developed which are only valid in the early contact when real area of contact is infinitesimally small, e.g., the Greenwood–Williamson (GW) model. In this article, newly developed statistical models, built under the framework of the (i) GW, (ii) Nayak–Bush and (iii) Greenwood’s simplified elliptic models, extend the range of application of the classic statistical models to the case of nearly complete contact. Nearly complete contact is the stage when the ratio of the real area of contact to the nominal contact area approaches unity. At nearly complete contact, the non-contact area consists of a finite number of the non-contact regions (over a finite nominal contact area). Each non-contact region is treated as a mode-I “crack”. The area of each non-contact region and the corresponding trapped volume within each non-contact region are determined by the analytical solutions in the linear elastic fracture mechanics, respectively. For a certain average contact pressure, not only can the real area of contact be determined by the newly developed statistical models, but also the average interfacial gap. Rough surface is restricted to the geometrically-isotropic surface, i.e., the corresponding statistical parameters are independent of the direction of measurement. Relations between the average contact pressure, non-contact area and average interfacial gap for different combinations of statistical parameters are compared between newly developed statistical models. The relations between non-contact area and average contact pressure predicted by the current models are also compared with that by Persson’s theory of contact. The analogies between the classic statistical models and the newly developed models are also explored.  相似文献   

9.
Bigger tyres with lower inflation pressure at equivalent wheel loads are expected to reduce the stresses transmitted to the soil. We measured the contact area and the vertical stress distribution near the soil-tyre interface for five agricultural implement tyres at 30 and 60 kN wheel load and rated inflation pressures. Seventeen stress transducers were installed at 0.1 m depth in a sandy soil at a water content slightly lower than field capacity and covered with loose soil. The recently developed model FRIDA was successfully fitted to the experimental stress data across the footprint. The contact area reflected the size of the tyres. The small tyres had identical contact area at the two loads, while it increased with load for the two biggest tyres. The small tyres presented uneven stress distributions with high peak stresses. Across the tests, the tyre inflation pressure described well the measured peak stress as well as the modelled maximum stress. The latter seems to be appropriate in evaluating vehicle trafficability. We found significant differences among tyres for the slope of a linear regression between the mean ground pressure and the inflation pressure, while the tyres displayed the same interception on the mean ground pressure axis. Our results therefore suggest that the slope of this relation is the most sensitive expression of tyres’ ability to deflect and transfer stresses to the soil. The two small tyres performed poorer in this respect than the larger tyres. Tests were limited to one soil strength, with future research directed toward a broader spectrum of soil strengths.  相似文献   

10.
From a microscopic point of view, the real contact area between two rough surfaces is the sum of the areas of contact between facing asperities. Since the real contact area is a fraction of the nominal contact area, the real contact pressure is much higher than the nominal contact pressure, which results in plastic deformation of asperities. As plasticity is size dependent at size scales below tens of micrometers, with the general trend of smaller being harder, macroscopic plasticity is not suitable to describe plastic deformation of small asperities and thus fails to capture the real contact area and pressure accurately. Here we adopt conventional mechanism-based strain gradient plasticity (CMSGP) to analyze the contact between a rigid platen and an elasto-plastic solid with a rough surface. Flattening of a single sinusoidal asperity is analyzed first to highlight the difference between CMSGP and J2 isotropic plasticity. For the rough surface contact, besides CMSGP, pure elastic and J2 isotropic plasticity analysis is also carried out for comparison. In all cases, the contact area A rises linearly with the applied load, but with a different slope which implies that the mean contact pressures are different. CMSGP produces qualitative changes in the distributions of local contact pressures compared with pure elastic and J2 isotropic plasticity analysis, furthermore, bounded by the two.  相似文献   

11.
In this study, the frictional contact problem for a layer bonded to a homogeneous substrate is considered according to the theory of elasticity. The layer is indented by a rigid cylindrical stamp which is subjected to concentrated normal and tangential forces. The friction between the layer and the stamp is taken into account. The problem is reduced to a singular integral equation of the second kind in which the contact pressure function and the contact area are the unknown by using integral transform technique and the boundary conditions of the problem. The singular integral equation is solved numerically using both the Jacobi polynomials and the Gauss?CJacobi integration formula, considering equilibrium and consistency conditions. Numerical results for the contact pressures, the contact areas, the normal stresses, and the shear stresses are given, for both the frictional and the frictionless contacts.  相似文献   

12.
Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow–area change interaction is determined by a specific estimate of the surface pressure integral. Model’s predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.  相似文献   

13.
A simplified analytical expression for the capillary pressure gradient in homogeneous porous media is proposed. Basic assumptions are: (1) the three phase contact angle between two fluids and porous rock is finite, (2) the surface area of contact between two fluids is small in comparison with contact surface areas between each fluid and porous rock in the unit volume of the system under consideration, (3) the model corresponds to conditions when both phases are continuous.  相似文献   

14.
Recently, a generalized Coulomb law for elastic bodies in contact has been developed by the author, which assumes that the tangential traction is the difference of the slip stress of the contact and the stick area, whereby each stick area corresponds to a smaller contact area. It holds for multiple contact regions also. Several applications for elastic half planes, half spaces, thin and thick layers and impact problems have been published. For plane contact of equal bodies with friction, it provides exact solutions, and the interior stress field can be expressed with analytical results in closed form. In this article, a singular superposition of flat punch solutions is outlined, in which the punches are aligned with an edge of the contact area. It is shown that this superposition satisfies Coulomb's inequalities directly, and new results for the Muskhelishvili potentials of several profiles are presented. It is illustrated how problems of singularity and multi-valuedness of complex functions can be solved in closed form, and the Chebyshev approximation used by earlier authors can be avoided. For comparison, some previous solutions for symmetric profiles are appended. Some results for the interior stress field, the pressure, the frictional traction and the surface displacements are compared with FEM solutions of an equivalent problem. The small differences between both methods show characteristic features of the FEM model and the theoretical assumptions, and are shortly explained. Further, this example can be used as benchmark test for FEM and BEM programs.  相似文献   

15.
In this paper, we consider the axisymmetric problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and is subjected over a part of its top surface to normal tractions while the rest of it is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using Hankel transform, the axisymmetric elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact radius. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using orthogonal Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

16.
In this paper, we consider the plane problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and over a certain segment of its top surface is subjected to normal tractions while the rest of this surface is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using integral transforms, the plane elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact half-length. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact half-length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

17.
The problem of the impact of an elongated solid body with a blant bottom on a thin layer of an ideal incompressible liquid is considered in the case where the horizontal component of the body velocity is much greater than its vertical component. The initial stage of the impact, during which the contact area between the body and the liquid is rapidly expanding, is studied. The loads on the body are determined by strip theory. The method of matched asymptotic expansions is used to determine the position and size of the contact area in each section. The considered problem is coupled: the liquid flow due to the motion of the body and the body motion itself are determined simultaneously. A system of integrodifferential equations was derived and used for both numerical investigation of the body motion under the action of hydrodynamic loads and for determination of the hydrodynamic pressure distribution over the contact area.  相似文献   

18.
为更加准确地描述机械磨削表面的接触刚度,本文在现有统计分析理论的基础上,提出了一种新的粗糙表面接触模型。模型针对接触表面微凸体形貌,将原有的球体假设采用cos函数曲线回转体代替,在假设形貌的基础上重新解算了微凸体弹塑性变形的临界压入深度,推导出了接触区域真实接触压力与接触刚度关系表达式。通过数值仿真方法得到了不同塑性指数下平均距离、接触刚度与接触压力之间的变化关系。对比结果显示,随着塑性指数的增大,本文模型的平均距离与球形模型的平均距离之间的差值逐渐增大。在接触刚度方面,本文模型相比球形模型更加贴近实验结果,并且随着塑性指数的增加,球形模型与本文模型之间的差值越来越大。本文模型结果与实验数据的相对偏差能够控制在5%以内,从而验证了本文模型的正确性,为更加准确地描述磨削表面零件的接触行为提供理论基础。  相似文献   

19.
This paper introduces a numerical method able to deal with a general bi-fluid model integrating capillary actions. The method relies first on the precise computation of the surface tension force. Considering a mathematical transformation of the surface tension virtual work, the regularity required for the solution on the evolving curved interface is weakened, and the mechanical equilibrium of the triple line can be enforced as a natural condition. Consequently, contact angles of the liquid over the solid phase result naturally from this equilibrium. Second, for an exhaustive representation of capillary actions, pressure jumps across the interface must be accounted for. A pressure enrichment strategy is used to properly compute the discontinuities in both pressure and gradient fields. The resulting method is shown to predict nicely static contact angles for some test cases, and is evaluated on complex 3D cases.  相似文献   

20.
The processes at various scale levels in the contact area of interacting objects under high-energy action will be examined from the viewpoint of mesomechanics. Modeling of contact area at atomic- and meso-scale levels was carried out on the base of discrete computational approach (method of particles). Molecular dynamic method was used at the micro-scale level; movable cellular automata method—at the meso-scale level. The gradient of velocity in areas near the surface leads to formation of low density and fragmented areas. This effect is accompanied by the failure of crystal lattice stability and intensive mixing process at the atomic level. The mechanisms of mass transfer in contact area were discussed. The results allow us to explain a host of experimental data of mechanochemistry such as phase formation at friction surface, alloy formation due to contact interaction under “pressure + shear” loading conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号