首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The feasibility of niobium oxynitride formation through nitridation of niobium pentoxide films in ammonia by rapid thermal processing (RTP) was investigated. Niobium films 200 and 500 nm thick were deposited by sputtering on Si(100) wafers covered by a 100 nm thick thermally grown SiO2 layer. These as‐deposited films exhibited distinct texture effects. They were processed in three steps using an RTP system. The as‐deposited niobium films were first nitridated in an ammonia atmosphere at 1000 °C for 1 min and then oxidised in molecular oxygen at temperatures ranging from 400 to 600 °C. Those samples in which a single Nb2O5 phase was determined after oxidation were additionally nitridated in ammonia at 1000 °C for 1 min. Investigations show that surface roughness of the samples after oxidation of niobium films first nitridated in ammonia is lower than after direct oxidation of as‐deposited films in oxygen, although the niobium pentoxide phase formed after annealing was the same in both cases. We explain this result as being due to the large expansion of the niobium lattice during the direct oxidation of the niobium film in molecular oxygen and also to the high oxidation rate of the as‐deposited niobium film in oxygen. By incorporation of oxygen in the crystal lattice of niobium and rapid formation of niobium pentoxide, substantial intrinsic stress was built up in the film, frequently resulting in delamination of the film from the substrate. Nitrogen hinders the diffusion of oxygen in nitridated films, which leads to a decrease of the oxidation rate and thus slower formation of Nb2O5. Nitridation of the completely oxidised niobium films in ammonia leads to the formation of niobium oxynitride and niobium nitride phases.  相似文献   

2.
The nitridation of niobium films approximately 250 and 650 nm thick by rapid thermal processing (RTP) at 800 °C in molecular nitrogen or ammonia was investigated. The niobium films were deposited by electron beam evaporation on silicon substrates covered by a 100 or 300 nm thick thermally grown SiO2 layer. In these investigations the reactivity of ammonia and molecular nitrogen was compared with regard to nitride formation and reaction with the SiO2 substrate layer. The phases formed were characterized by X-ray diffraction (XRD). Depth profiles of the elements in the films were recorded by use of secondary neutral mass spectrometry (SNMS). Microstructure and spatial distribution of the elements were imaged by transmission electron microscopy (TEM) and energy-filtered TEM (EFTEM). Electron energy loss spectra (EELS) were taken at selected positions to discriminate between different nitride, oxynitride, and oxide phases. The results provide clear evidence of the expected higher reactivity of ammonia in nitride formation and reaction with the SiO2 substrate layer. Outdiffusion of oxygen into the niobium film and indiffusion of nitrogen from the surface of the film result in the formation of oxynitride in a zone adjacent to the Nb/SiO2 interface. SNMS profiles of nitrogen reveal a distinct tail which is attributed to enhanced diffusion of nitrogen along grain boundaries.  相似文献   

3.
The oxidation and nitridation processes of niobium films in a rapid thermal processing (RTP) – system were investigated. 200 and 500 nm niobium films were deposited via sputtering on sapphire-(1-102)-substrate. At first niobium films were oxidized in molecular oxygen at temperatures ranging from 350 to 500 °C and for times of 1, 2 and 5 min and then nitridated in ammonia at 1000 °C for 1 min using an RTP system. For characterisation of the niobium films complementary analytical methods were used: X-ray diffraction (XRD) for phase analysis, secondary ion mass spectrometry (SIMS) for determining the elemental depth profiles of the films, scanning electron microscopy (SEM) and atomic force microscopy (AFM) for characterisation of the surface morphology of the films. The influence of the substrate, single crystalline sapphire, on the reactivity of the niobium films was studied in dependence of temperature, time of reaction and film thickness. The possibility of existence of niobium oxynitride phase was investigated. According to XRD and SIMS data, there is evidence that an oxynitride phase is formed after oxidation and subsequent nitridation in the bulk of some Nb films. In some of the experiments crack formation in the films or even delamination of the Nb films from the substrates was observed.  相似文献   

4.
By electron beam evaporation and RF magnetron sputtering 500 nm thick niobium films were deposited on thermally oxidized Si-(100)-wafers and by RF magnetron sputtering on monocrystalline sapphire-(1-102)-wafers. Investigations by scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed differences of the film morphology depending on the substrate used: films deposited on SiO2 exhibited an even surface with small crystallites, films on sapphire showed parallel surface structures with relatively large and well-shaped crystallites pointing at regular crystal growth influenced by the substrate. These differences in film morphology were also reflected in different reflection intensities of the films in XRD patterns, indicating that the films deposited on sapphire were strongly textured. In a first set of experiments nitridation in molecular nitrogen and ammonia was investigated. In a second set of experiments, it was tried to form oxynitrides of niobium by annealing the nitrided films in molecular oxygen. Particularly by X-ray-diffraction the formation of different nitride and oxide phases in dependence of the reaction temperature was examined. Further, elemental depth profiles were recorded by secondary ion mass spectrometry (SIMS) to track the position of the phases formed in the film. The different substrates led to disparate film reactivities, resulting in different nitridation grades of the films at similar reaction temperatures. In general, larger crystallite sizes resulted in less chemical reactivity of the films: even after nitridation at 1000 °C metallic niobium was still present in films deposited on sapphire. However, no evidence was obtained for the formation of oxynitrides by the process sequence observed.  相似文献   

5.
The nitridation of vanadium films in molecular nitrogen and ammonia using a RTP‐system was investigated. The V films were deposited on silicon substrates covered by 100 nm thermal SiO2. For a few experiments sapphire substrates were used. Nitride formation at high temperatures (900 and 1100 °C) and interface reactions and diffusion of oxygen out of the SiO2‐layer into the metal lattice at moderate temperatures (600 and 700 °C) were studied. For characterisation complementary analytical methods were used: X‐ray diffraction (XRD) for phase analysis, secondary neutral mass spectrometry (SNMS) and Rutherford Backscattering (RBS) for acquisition of depth profiles of V, N, O, C and Si, transmission electron microscopy (TEM) in combination with electron energy filtering for imaging element distributions (EFTEM) and recording electron energy loss spectra (EELS) to obtain detailed information about the initial stages of nitride, oxide and oxynitride formation, respectively, and the microstructure and element distributions of the films. In these experiments the SiO2‐layer acts as diffusion barrier for nitrogen and source for oxygen causing the formation of substoichiometric vanadium oxides and oxynitrides near the V/SiO2‐interface primarily at temperatures ≤ 900 °C. At a temperature of 1100 °C just a small amount of oxynitride forms near the interface because rapid diffusion of nitrogen and fast formation of VN (diffusion barrier for oxygen) inhibit the outdiffusion of oxygen into the metal layer. In the 600 °C regime, in argon atmosphere oxynitride phases observed in the surface region of these films originate from reaction of residual oxygen in the argon gas, whereas NH3 as process gas does not lead to oxide or oxynitride formation at the surface (apart from the oxidation caused by storage). NH3 seems to support the diffusion of oxygen out of the SiO2‐layer. During the decomposition of ammonia at higher temperatures hydrogen is formed, which could attack the SiO2. In contrast, sapphire substrates do not act as oxygen source in the 600 °C regime and change the nitridation behaviour of the vanadium films.  相似文献   

6.
B/Nb and B/Nb2N bilayers and Nb/B/Nb trilayers of about 550 nm total thickness have been deposited on Si(100) wafers with 100 nm thermally grown oxide. Nb and B layers were deposited by magnetron sputtering. Nb2N layers were prepared by nitridation of Nb films via rapid thermal processing (RTP). The samples were annealed subsequently at temperatures between 600 and 1,200 °C in an RTP system under Ar or NH3 gas flow to study interdiffusion and reactivity of niobium, boron and nitrogen. Formation of phases was investigated by X-ray diffraction (XRD); surface morphology and roughness were studied via scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Elemental depth profiles of selected samples were recorded by secondary ion mass spectrometry (SIMS). Annealing of the B/Nb bilayers and Nb/B/Nb trilayers under Ar leads to the formation of Nb3B2 at 1,200 °C at the B/Nb interface. At lower temperatures the high oxygen content in the boron layer is supposed to hinder the formation of borides due to formation of glass-like boron oxides. In NH3 several niobium nitrides are formed but no boride phases. Here again the reactivity of boron with niobium is suppressed by the high oxygen content and boron oxide formation. During annealing of the B/Nb2N bilayers no borides were formed indicating that well-formed Nb2N is an effective diffusion barrier for B.  相似文献   

7.
The potential of RTP for the preparation of transition metal nitrides by reaction of metal thin films in molecular nitrogen was investigated. The films and the nitridation process were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive x-ray analysis (EDX) in a scanning electron microscope (SEM) and secondary neutral mass spectrometry (SNMS). The chemical states of vanadium at the utmost surface, detected by XPS, are related to V2O5 before RTP and to vanadium nitride, oxide and oxynitride after RTP. The deposition of a 3 nm Si top layer prevents V from oxidation and its selective removal before RTP enhances the proportion of nitride determined by XPS after RTP. From comparative experiments in a conventional tube furnace the advantages of RTP became obvious. With short process times of the RTP technique the integral amount of residual oxygen is kept low and oxide formation is largely avoided. The nitrogen content and the different polycrystalline phases formed by varying process time and temperature provide information about reactivity and the nitridation process. The nitrogen to vanadium ratio was determined by EDX and SNMS, revealing that the N content reaches saturation after only 5 seconds at 1100?°C.  相似文献   

8.
Electrochemical formation of anodic oxide films on niobium (Nb) surfaces in 1 M H2SO4 solutions was studied using ellipsometry and Raman spectroscopy. By in situ ellipsometric measurements, the coefficient of film thickness growth and the complex index of refraction of anodic oxide films in the voltage range between 0 and 100 V were determined. The Raman spectra reveal that the thin passive films are amorphous. In the beginning of crystallization, the anodic oxide films consist of mixtures of NbO2 and Nb2O5, while NbO2 is completely transformed to Nb2O5 for thicker and well-crystallized films.  相似文献   

9.
《Solid State Sciences》2004,6(1):101-107
TaON and Ta3N5 thin films of different thicknesses were prepared by pulsed laser deposition of tantalum oxide followed by ex situ thermal nitridation under ammonia. The nitridation was carried out in flowing gas in the 600–800 °C temperature range. The dependence of tantalum oxynitride and nitride crystalline phases formation on nitridation reaction parameters was investigated. Structural and microstructural characteristics were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

10.
Interaction (25–620°C) of aluminum and its alloys with an atmosphere saturated with nitrogen was studied to determine the role played by rare-earth metals in the mechanism by which nitride phases are formed in oxidation of Al + REM alloys in air. The ellipsometric method and Auger electron spectroscopy were used to determine that, under the given experimental conditions, metallic aluminum is subjected to the greatest extent to the nitridation process, which is competing with the oxidation process. The process is initiated by the conversion of the amorphous oxide film to γ-Al2O3. The surface of Al + REM alloys interacts with nitrogen at the outer part of the oxide layer. The rare-earth metal actively reacts with impurity oxygen present in the atmosphere under study and hinders formation of nitride/oxynitride layers.  相似文献   

11.
Anodic oxide films formed potentiostatically on niobium surfaces, from open circuit potential (OCP) to 10 V, were studied by performing in situ and ex situ ellipsometric measurements. The kinetics of the film thickness growth in 1 M H2SO4 and complex indices of refraction of these films were determined. A strong influence of the surface preparation conditions on the complex refractive indices of the metal substrate and anodic oxide films was shown. By steady-state measurements at OCP, a small thickening of the natural air-formed oxide film with chemical composition Nb2O5 in 1 M H2SO4 solution was detected. With cathodic pre-treatment, only partial reduction and small thinning of the natural air-formed oxide film was possible. The thicknesses of the natural air-formed oxide films on fine mechanically polished and electropolished Nb surfaces were determined. The build up of the natural air-formed oxide film, at ex situ conditions, on the already formed anodic oxide films was confirmed. It was shown that electropolishing gives more similar optical surface properties to the bare metal than the fine mechanical polishing. Electronic Publication  相似文献   

12.
Silicon oxynitride has been used as a shallow gate oxide material for microelectronics and its thickness has been reduced over the years to only a few tens of angstroms due to device size scaling. The nitride distribution and density characteristic in the gate oxide thus becomes imperative for the devices. The shallow depth profiling capability using time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) has huge potential for the nitrogen characterization of the shallow gate oxide film. In this article, both positive and negative spectra of TOF‐SIMS on silicon oxynitride have been extensively studied and it was found that the silicon nitride clusters SixN? (x = 1–4) are able to represent the nitrogen profiles because their ion yields are high enough, especially for the low‐level nitride doping in the oxide, which is formed by the annealing of nitric oxide on SiO2/Si. The gate oxide thickness measured by the TOF‐SIMS profiling method using 18O or CsO profile calibration was found to correlate very well with transmission electron microscope measurement. The nitrogen concentration in the gate oxide measured using the TOF‐SIMS method was consistent with the results obtained using the dynamic SIMS method, which is currently applied to relatively thicker oxynitride films. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Nitrogen doped zinc oxide (ZnO) nanoparticles have been synthesized using a colloidal route and low temperature nitridation process. Based on these results, 200 nm thick transparent ZnO thin films have been prepared by dip-coating on SiO2 substrate from a ZnO colloidal solution. Zinc peroxide (ZnO2) thin film was then obtained after the chemical conversion of a ZnO colloidal thin film by H2O2 solution. Finally, a nitrogen doped ZnO nanocrystalline thin film (ZnO:N) was obtained by ammonolysis at 250 °C. All the films have been characterized by scanning electron microscopy, X-ray diffraction, X-Ray photoelectron spectroscopy and UV–Visible transmittance spectroscopy.  相似文献   

14.
Good accuracy in depth profile analyses of nitrogen in ultrathin oxynitride films is desirable for process development and routine process monitoring. Low energy SIMS is one of the techniques that has found success in the accurate characterization of thin oxynitride films. This work investigated the artifacts in a typical depth profile analysis of nitrogen with the current SIMS technique and the ways to improve the accuracy by selecting optimal analytical conditions. It was demonstrated that surface roughness developed rapidly in a SiO2/Si stack when it was bombarded with an O2+ beam at 250 eV and angle of incidence from 70 to 79° . The roughness caused distortion in the measured depth profiles of nitrogen and the major component elements. However, the above roughness and the distortion in the depth profiles can be eliminated by using a 250 eV O2+ beam at an angle of incidence above 80° . Depth profile analyses with a 250 eV 83° O2+ beam exhibited minimal surface roughening and insignificant variation in the secondary ion yield of SiN? from SiO2 bulk to the SiO2/Si interface, facilitating an accurate analysis of nitrogen distribution in a SiO2/Si stack. In addition, depth profiles of the major component elements such as 18O? and 28Si? delivered clear information on the location of the SiO2/Si interface. Using the new approach, we compared nitrogen distribution in thin SiNO films with the decoupled‐plasma nitridation (DPN) at various powers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Perovskite (K, Na)NbO3 (KNN) thin films (~100 nm) were prepared by sol–gel/spin coating process on Pt/SiO2/Si substrates and annealed at 650 °C. The structural properties of KNN films were confirmed by X‐ray diffraction analysis (XRD), Raman spectroscopy and scanning electron, transmission electron and atomic force microscopy (SEM, TEM and AFM) analysis. Pure perovskite phase of K0.65Na0.35NbO3 in nonstoichiometric composition with monoclinic symmetry in film was revealed. Uniform homogeneous microstructure of KNN film with the roughness (~6.9 nm) contained spherical particles (~50–90 nm). Nanoindentation technique was used to characterize the mechanical properties of KNN films. Elastic modulus and hardness of Pt, SiO2 and KNN thin films were calculated from their composite values of KNN/Pt/SiO2/Si film/substrate system. The modulus and hardness of KNN film (71 and 4.5 GPa) were lower in comparison with SiO2 (100 and 7.5 GPa). Pt film (~30 nm) did not influence the composite modulus, but had effect on hardness of KNN film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
V5Al8 films (thickness about 100 nm) were deposited on sapphire substrates by RF‐sputtering and nitridated with NH3 at 600‐1250 °C (1 min) in a RTP system. The as deposited and nitridated films were investigated by ESCA (electron spectroscopy for chemical analysis), XRD (X‐ray diffraction), XRR (X‐ray reflectometry), AFM (atomic force microscopy) and SEM (scanning electron microscopy). Formation of an aluminum nitride layer at the surface and precipitation of V(Al) in the bulk was found. In the temperature regime from 600 °C to 900 °C a considerable amount of oxygen is incorporated in the aluminum nitride layer. The roughness of the surface increased with increasing temperature and at 1250 °C a partially detaching of the AlN layer could be observed.  相似文献   

17.
Abstract  A mild, efficient, and highly selective oxidation method of sulfides to sulfoxides using Fe(NO3)3·9H2O and catalytic amounts of KBr or NaBr in the presence of wet SiO2 (50% w/w) has been developed. A variety of aliphatic and aromatic sulfides were selectively oxidized at room temperature in good to excellent yields. Graphical abstract     相似文献   

18.
Formation of niobium nitride by rapid thermal processing   总被引:1,自引:0,他引:1  
The formation of group V transition metal nitride films by means of rapid thermal processing (RTP) has been investigated. Here we focus on the nitridation of niobium films of 200-500 nm thickness in the temperature range from 500 to 1,100 degrees C under laminar flow of molecular nitrogen or ammonia. The nitride phases formed were characterized by X-ray diffraction (XRD). Secondary neutral mass spectrometry (SNMS) and transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS) were carried out on samples of selected experiments to provide more detailed information about the initial stages of nitride formation and the microstructure of the films. A classical formation sequence of nitride phases was observed with increasing nitrogen content in the order: alpha-Nb(N) --> beta-Nb2N --> gamma-Nb4N3 --> delta'-NbN --> Nb5N6. Furthermore, oxide enriched regions were discovered inside the metal films. These turned out to be formed mainly in the nitride sequence between the a-alphaNb(N) and beta-Nb2N-phases at the Nb/SiO2 interface due to a reaction of the Nb with the SiO2 layer of the silicon substrates on which the films had been deposited. The SiO2 layer acts as diffusion barrier for nitrogen but also as source for oxygen, according to SNMS and TEM/EELS studies, resulting in the formation of Nb-oxides and/or oxynitrides at the Nb/SiO2 interface.  相似文献   

19.
Abstract  Aluminium anodization behavior in ammonium sebacate solution (w = 4%) in ethylene glycol, and in several H3PO4-containing electrolytes, has been investigated. A new mechanism is proposed for the formation of porous anodic films. The model emphasizes the close relationship between pore generation and oxygen evolution. PO4 3− ions incorporated in the anodic films behave as the primary source of avalanche electrons. It is the avalanche electronic current through the barrier film that causes oxygen evolution during anodization. When growth of anodic oxide and oxygen evolution occur simultaneously at the aluminium anode, cavities or pores are formed in the resulting films. Accordingly, the mechanisms of growth of barrier and porous films are not very different in nature. These findings are a decisive new step towards full understanding of the nature of anodic alumina films. Graphical abstract     相似文献   

20.
The decomposition reaction of niobium(V) oxytrichloride ammoniate to the oxynitride of niobium in the 5+ oxidation state was developed in a methodological way. By combining elemental analysis, Rietveld refinements of X‐ray and neutron diffraction data, SEM and TEM, the sample compound was identified as approximately 5 nm‐diameter particles of NbO1.3(1)N0.7(1) crystallizing with baddeleyite‐type structure. The thermal stability of this compound was studied in detail by thermogravimetric/differential thermal analysis and temperature‐dependent X‐ray diffraction. Moreover, the electrochemical uptake and release by the galvanostatic cycling method of pure and carbon‐coated NbO1.3(1)N0.7(1) versus lithium was investigated as an example of an Li‐free transition‐metal oxynitride. The results showed that reversible capacities as high as 250 and 80 A h kg?1 can be reached in voltage ranges of 0.05–3 and 1–3 V, respectively. Furthermore, a plausible mechanism for the charge–discharge reaction is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号