首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Tuning reaction temperatures as well as the variation in starting copper salts and solvents led to the formation of a new series of Cu(II) coordination compounds with 2,3-bis(2-pyridyl)pyrazine (dpp): a mononuclear [Cu(acac)(dpp)(NO3)] (1) complex, two dinuclear [Cu2(acac)2(dpp)(NO3)(H2O)]NO3 (2) and [Cu2(Hdpp)2(ox)(Cl)2(H2O)2]Cl2·6(H2O) (4) complexes, and four coordination polymers {[Cu4(dpp)2(ox)(Cl)6]}n (3), {[Cu4(dpp)2(ox)(NO3)6(H2O)2]∙1.2(H2O)}n (5), {[Cu(dpp)(NO3)](NO3)·(H2O)}n (6) and {[Cu(dpp)(SO4)(H2O)2]}n (7), where acac = acetylacetonate, ox2− = oxalate. Remarkably, the treatment of Cu(II) chloride dihydrate with dpp in methanol solution led to an unusual in situ condensation of dpp with acac to produce [Cu2(acdpp)2(Cl)4]·2(MeOH) (8). The structure of 1 consists of neutral, mononuclear [Cu(acac)(dpp)(NO3)] units with acac and dpp acting as bidentate ligands. In 2, the dpp ligand coordinates in a bis-chelating mode to two Cu(II) ions and bridges them into a dimeric entity, whereas an oxalate linker joins [Cu(Hdpp)(Cl)2(H2O)]+ units into a dimer in 4. Compounds 3, 5, 6 and 7 are 1D chain coordination polymers, which incorporate two symmetry independent metal centers and different bridging ligands: Hdpp+ as a protonated cationic or dpp as a neutral chelating ligand and oxalate, Cl anions or sulfate di-anions as bridging ligands. Magnetic studies were performed on samples 1 and 2, and the analysis reveals a very weak magnetic exchange coupling mediated via the dpp ligand.  相似文献   

2.
Three new complexes, {[Cu3(2,3-pyma)2(sip)2(H2O)5]·5H2O} n , {[Zn(H-2,3-pyma)(sip)(H2O)]·H2O} n , and {[Cd(H-2,3-pyma)(sip)(H2O)]·H2O} n (2,3-pyma = (2-pyridylmethyl,3-pyridylmethyl)amine and H3sip = 5-sulfoisophthalic acid) were synthesized and structurally characterized by single-crystal X-ray diffraction. The Cu(II) complex crystallizes in neutral two-dimensional layers in which the Cu(II) centers are bridged by both the flexible 2,3-pyma and the rigid sip ligands. The Zn(II) and Cd(II) complexes contain neutral one-dimensional chains linked by the rigid sip anions, whereas the flexible H-2,3-pyma ions only act as terminal ligands. The Cu(II) complex shows weak antiferromagnetic interactions, while the Zn(II) and Cd(II) complexes exhibit fluorescent emissions in the solid state.  相似文献   

3.
Reaction of a imidazole phenol ligand 4‐(imidazlo‐1‐yl)phenol (L) with 3d metal salts afforded four complexes, namely, [Ni(L)6] · (NO3)2 ( 1 ), [Cu(L)4(H2O)] · (NO3)2 · (H2O)5 ( 2 ), [Zn(L)4(H2O)] · (NO3)2 · (H2O) ( 3 ), and [Ag2(L)4] · SO4 ( 4 ). All complexes are composed of monomeric units with diverse coordination arrangements and corresponding anions. All the hydroxyl groups of monomeric cations are used as hydrogen‐bond donors to form O–H ··· O hydrogen bonds. However, the coordination habit of different metal ions produces various supramolecular structures. The NiII atom shows octahedral arrangement in 1 , featuring a 3D twofold inclined interpenetrated network through O–H ··· O hydrogen bond and π–π stacking interaction. The CuII atom of 2 displays square pyramidal environment. The O–H ··· O hydrogen bond from the [Cu(L)4(H2O)]2+ cation and lattice water molecule as well as π–π stacking produce one‐dimensional open channels. NO3 ions and lattice water molecules are located in the channels. 3 is a 3D supramolecular network, in which ZnII has a trigonal bipyramid arrangement. Two different rings intertwined with each other are observed. The AgI in 4 has linear and triangular coordination arrangements. The mononuclear units are assembled into a 1D chain by hydrogen bonding interaction from coordination units and SO42– anions.  相似文献   

4.
Three new MOFs with the same components but different structures and magnetic behavior, {[Cu6(atr)6(H2O)2(μ3 OH)2(SO4)5 ]·5.25H2O} n (1), {[Cu2(atr)2( -OH)2(SO4 )]·3H2O} n (2), and {[Cu7(atr)6(H2O)6(μ3-OH)2(SO4 )6 ]·2H2O} n (3) (atr = 4-amino-1,2,4-triazole), were respectively synthesized by diffusion reactions in the presence of different structure-directing agents. Complex 1 is a slightly spin-frustrated antiferromagnetic layer with sulfonate aggregated CuⅡ6 clusters periodically extended by ditopic sulfonate linkers. 2 is a grid-based coplanar sheet with hydroxyl group bridgedCuOCulinear-chain interlinked by pairs of μ3 -atr ligands, exhibiting strong antiferromagnetic interactions to lead to an S = 0 spin ground state at low temperature. In contrast, air-instable 3 has a ladder-like broad-ribbon structure constructed from triangular CuⅡ3 cores and centrosymmetric CuⅡ1 octahedra. Obviously, the variable CuⅡ -ligand connectivity and the involving magnetic properties are significantly dominated by the cooperative and variable binding modes of the mixed sulfonate-atr ligands and bi-/tridentate bridging hydroxyl heterobridges.  相似文献   

5.
In the title metal–organic framework complex, {[Cu(C4H4N2)2](C8H5O7S)·H2O}n or {[CuI(pyz)2](H2SIP)·H2O}n (pyz is pyrazine and H3SIP is 5‐sulfoisophthalic acid or 3,5‐dicarboxybenzenesulfonic acid), the asymmetric unit is composed of one copper(I) center, one whole pyrazine ligand, two half pyrazine ligands lying about inversion centres, one H2SIP anion and one lattice water molecule, wherein each CuI atom is in a slightly distorted tetrahedral coordination environment completed by four pyrazine N atoms, with the Cu—N bond lengths in the range 2.017 (3)–2.061 (3) Å. The structure features a three‐dimensional diamondoid network with one‐dimensional channels occupied by H2SIP anions and lattice water molecules. Interestingly, the guest–water hydrogen‐bonded network is also a diamondoid network, which interpenetrates the metal–pyrazine network.  相似文献   

6.
Two new one-dimensional coordination polymers: {[Cu(L1)(H4TTHA)] · H2O} n (I), {[Cu2(L2)2(H4TTHA)2] · 10H2O} n (II) (L1 = 1,3,10,12,15,18-hexaazatetracyclodocosane; L2 = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane), based on a flexible hexapodal ligand H6TTHA (1,3,5-triazine-2,4,6-triamine hexaacetic acid), have been synthesized and structure characterized. Single-crystal X-ray diffraction analyses indicated that the central metal atom displays distorted six-coordinate octahedral coordination geometry by coordination with four nitrogen atoms of L1 or L2, and two oxygen atoms of H6TTHA liagand. Both of the compounds show one-dimensional chain structures, which are constructed of [Cu(L)]2+ and [H4TTHA]2? anion with 1 : 1 ratio. Interestingly, the nature of the macrocycle influences the structure of the coordination polymer produced with H6TTHA for each of the two compounds. TG, IR, PXRD, and photoluminescent of the compounds are investigated.  相似文献   

7.
By employing one bridging ligand, 2,4‐pyridinedicarboxylate (2,4‐pda2?), three one‐dimensional (1D) coordination polymers of [Cu(2,4‐pda)(H2O)2] ( 1 ), {[Cu4(2,4‐pda)4(H2O)8]·3H2O} ( 2 ), and {[Cd(2,4‐pda)(H2O)3]·H2O} ( 3 ) were synthesized. A simple zigzag polymeric chain is observed for both 1 and 3 , but a railroad‐like zigzag polymeric chain is observed for 2. Almost all water molecules, whether coordinated or not, are involved in hydrogen bonding interactions and help to tie up the 1D polymeric chains of 1‐3 into a three‐dimensional (3D) network. A comparison about the coordination geometries in all similar coordination polymers available to date is also included.  相似文献   

8.
Divalent copper coordination polymers containing an isophthalate ligand and a dipyridylamide ligand show different dimensionalities and topologies depending on pyridyl nitrogen donor disposition and the steric bulk of the substituent on the dicarboxylate aromatic ring. According to single‐crystal X‐ray diffraction, [Cu(ip)(3‐pna)]n ( 1 , ip = isophthalate, 3‐pna = 3‐pyridylnicotinamide) shows a (4, 4) layered grid structure based on {Cu2(OCO)2} dimeric units. {[Cu(ip)(3‐pina)]·H2O}n ( 2 , 3‐pina = 3‐pyridylisonicotinamide) exhibits similar dimeric units, but in contrast to 1 these are connected into a non‐interpenetrated 3D 658 cds network. Both [Cu(mip)(3‐pina)]n ( 3 , mip = 5‐methylisophthalate) and [Cu(meoip)(3‐pina)]n ( 4 , mip = 5‐methoxyisophthalate) display dimer‐based 41263 pcu networks in contrast to 2 . Use of 5‐hydroxyisophthalate (H2hip) as a precursor afforded a mixture of {[Cu2(hip)2(3‐pina)4]·9.5H2O}n ( 5 ) and [Cu(hip)(3‐pina)]n ( 6 ). Compound 5 shows a 2D interdigitated structure with [Cu(hip)]n coordination polymer layers featuring {Cu2(OCO)2} dimeric units and pendant 3‐pina ligands, while 6 also showed a dimer‐based 41263 pcu network. Use of the very sterically bulky 5‐tert‐butylisophthalate (tbip) ligand afforded the 1D chain coordination polymer {[Cu(tbip)(3‐pina)2(H2O)]·H2O}n ( 7 ), which contains isolated copper ions in contrast to 1 – 6 , and has a curious “butterfly“ resemblance. Very weak antiferromagnetic coupling is seen within the {Cu2(OCO)2} dimeric units in 1 . Thermal decomposition behavior is also discussed.  相似文献   

9.
The coordination mode of the dimethylmalonate ligand in the two title CuII complexes, {[Cu(C5H3O4)(H2O)]·H2O}n, (I), and [Cu(C5H3O4)(H2O)]n, (II), is the same, with chelated six‐membered, bis‐monodentate and bridging bonding modes. However, the coordination environment of the CuII atoms, the connectivity of their metal–organic frameworks and their hydrogen‐bonding interactions are different. Complex (I) has a perfect square‐pyramidal CuII environment with the aqua ligand in the apical position, and only one type of square grid consisting of CuII atoms linked via carboxylate bridges to three dimethylmalonate ligands, with weak hydrogen‐bond interactions within and between its two‐dimensional layers. Complex (II) has a coordination geometry that is closer to square pyramidal than trigonal bipyramidal for its CuII atoms with the aqua ligand now in the basal plane. Its two‐dimensional layer structure comprises two alternating grids, which involve two and four different dimethylmalonate anions, respectively. There are strong hydrogen bonds only within its layers.  相似文献   

10.
By employing one bridging ligand, 2,5‐pyridinedicarboxylate (2,5‐pda2?), in the presence or absence of another bridging ligand, 4,4′‐bipyridine (4,4′‐bpy), one one‐dimensional (1D) {[Co2(2,5‐pda)(2,5‐Hpda)2(4,4′‐bpy)(H2O)3]·6H2O} ( 1 ) and two two‐dimensional (2D) coordination polymers, {[Cu3(2,5‐pda)3(H2O)3]·6H2O} ( 2 ) and {[Co(2,5‐pda)(H2O)]·2H2O} ( 3 ) were synthesized. Complexes 2 and 3 are characterized as concomitant polymorphs from a one‐pot reaction at ambient temperature. A comparison of the coordination geometries of all neutral and anionic coordination polymers containing {Mx(2,5‐pda)y(H2O)z} available to date is presented.  相似文献   

11.
Two sulfato CuII complexes [Cu2(bpy)2(H2O)(OH)2(SO4)]· 4H2O ( 1 ) and [Cu(bpy)(H2O)2]SO4 ( 2 ) were synthesized and structurally characterized by single crystal X—ray diffraction. Complex 1 consists of the asymmetric dinuclear [Cu2(bpy)2(H2O)(OH)2(SO4)] complex molecules and hydrogen bonded H2O molecules. Within the dinuclear molecules, the Cu atoms are in square pyramidal geometries, where the equatorial sites are occupied by two N atoms of one bpy ligand and two O atoms of different μ2—OH groups and the apical position by one aqua ligand or one sulfato group. Through intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular π—π stacking interactions, the dinuclear complex molecules are assembled into layers, between which the hydrogen bonded H2O molecules are located. The Cu atoms in 2 are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two H2O molecules and two sulfato groups with the sulfato O atoms at the trans positions and are bridged by sulfato groups into 1[Cu(bpy)(H2O)2(SO4)2/2] chains. Through the interchain π—π stacking interactions and interchain C—H···O hydrogen bonds, the resulting chains are assembled into bi—chains, which are further interlinked into layers by O—H···O hydrogen bonds between adjacent bichains.  相似文献   

12.
Three new one‐dimensional (1D) chain metal–nitroxide complexes {[Cu(NIT4Py)2(suc)(H2O)] · 3H2O}n ( 1 ), {[Cd(NIT4Py)2(suc)(H2O)] · [Cd(NIT4Py)2(suc)(H2O)2] · 3H2O}n ( 2 ), and {[Zn(NIT4Py)(glu)(H2O)] · H2O}n ( 3 ) [NIT4Py = 2‐(4′‐pyridyl)‐4, 4, 5, 5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, suc = succinate anion and glu = glutarate anion] were synthesized and structurally characterized. Single‐crystal X‐ray analyses indicate that the three complexes crystallize in neutral 1D chains in which the metal‐nitroxide units are linked by flexible dicarboxylate anions. The succinate anions only adopt trans configuration in complexes 1 and 2 , whereas the glutarate anion has gauche/anti conformation in complex 3 . Magnetic measurements show that complex 1 exhibits weak antiferromagnetic interactions between the copper ions and the nitroxides.  相似文献   

13.
In the title polymeric heterometallic compound, {[Cu3Gd(C6H4NO2)3Cl3(H2O)2]·0.5H2O}n, comprising copper(I) and gadolinium(III) cations bridged by nicotinate (nic) ligands and chloride anions, the GdIII centers display a bicapped trigonal prismatic geometry, defined by six carboxylate O atoms and two water molecules. For copper(I), one Cu center is three‐coordinated by three chloride ions and displays a trigonal–planar geometry; the other two Cu centers are four‐coordinated and display a very distorted tetrahedral geometry. The chloride anions act in μ2‐ and μ3‐bridging modes, linking the CuI ions into an infinite chain. The nic ligand exhibits a tridentate coordination mode, with the carboxylate O atoms linking to two GdIII ions and the N atom linking to one CuI ion. Thus, a novel three‐dimensional heterometallic coordination polymer is constructed from Gd–carboxylate subunits and Cu—Cl chains. In addition, intra‐ and intermolecular O—H...O and O—H...Cl hydrogen bonds are also observed within the three‐dimensional structure. Topologically, the framework represents an unusual 3,6‐connected (4.82)3(410.65) net.  相似文献   

14.
Reactions of the rigid–flexible N-heterocycle 1,3-bis(5-(pyridine-2-yl)-1,2,4-triazole-3-yl) propane (H2L) with MCl2 (M = Fe, Co, Cu or Zn) gave coordination complexes, {[Fe 2 III Cl4(H2L)2]·2Cl}·EtOH·H2O (1), {[Co3Cl5(HL)]·H2O} n (2), {[Co4Cl4(H2L)2(H2O)4]·[CoCl4]2}·H2O (3), [Cu2Cl3(HL)(H2O)]6·5H2O (4), [Cu 2 II CuICl4(HL)] n (5), {[Zn2Cl2(L)H2O]·H2O} n (6) and [Zn4Cl6(HL)2] (7), which have been characterized by single-crystal X-ray diffraction. Structural analysis reveals that the pyridine triazole ligand attains versatile coordination modes in these complexes. Complexes 1, 3, 4 and 7 consist of 0D clusters with binuclear or tetranuclear units; complex 2 presents a 2D network accompanied by HL? and chloride bridges; complexes 5 and 6 show 1D chains with [Cu3] and [Zn2] subunits. In addition, the electrospray ionization mass spectrometry properties of selected complexes were investigated, revealing the stabilities and structural states of these complexes in solution. These results indicate that H2L is an excellent multiconnection linker for the construction of diverse coordination complexes.  相似文献   

15.
3D LaIII and 2D CuII coordination polymers with 5-nitroisophthalate anions, [La2(μ-Nip)(μ-SO4)2(H2O)5] n (1) and {[Cu3(μ-OH)2(μ-Nip)2(μ-H2O)2] ·?2H2O} n (2), have been synthesized, characterized and studied by X-ray crystallography. The La atoms have eight–coordinate geometries in distorted square antiprism environments and the Cu atoms have five- and six–coordinate geometries with distorted square pyramidal and octahedral environments. Self-assembly of these compounds in the solid state occurs through coordination and hydrogen bonding.  相似文献   

16.
Three one-dimensional metal–nitroxide complexes [Cu(NIT4Py)2(1,4-chdc)] n (1), {[Cu(IM4Py)2(1,4-chdc)(H2O)]·H2O} n (2) and {[Zn(IM4Py)2(1,4-chdc)(H2O)2]·H2O} n (3) (NIT4Py = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, IM4Py = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl and 1,4-chdc = 1,4-cyclohexanedicarboxylate anion) have been synthesized and characterized structurally as well as magnetically. All three complexes crystallize in neutral one-dimensional chains in which the nitroxide–metal–nitroxide units are linked by linear 1,4-cyclohexanedicarboxylate anions. The 1,4-chdc ligands only present the e,e-trans-configuration in these complexes, although there are both cis- and trans-isomers in the free ligand. Magnetic measurements show that complexes 1 and 2 both exhibit weak antiferromagnetic interactions between the copper atoms and nitroxide radicals.  相似文献   

17.
Reactions of Co(ClO4)2·6H2O, Cu(NO3)2·3H2O with 4,4′‐dipyridylsulfide (dps) give rise to coordination polymers {[Co(dps)2(DMF)2]·2(ClO4)·2dps}n ( 1 ) and {[Cu(dps)2(DMF)(H2O)]·(PF6)·(NO3)}n ( 2 ) (DMF = formydimethylamine), respectively. X‐ray diffraction analyses reveal that compound 1 has a one dimensional (1D) chain structure, whereas compound 2 is built of the non‐interpenetrating wave‐like (4, 4) nets. Close inspection of the abundant charge‐assisted weak hydrogen bonds (C‐H···X, X = O, F) between the anions and frameworks in these compounds reveals that the appearance of anion may have a subtle effect on the framework topology. Furthermore, quite few examples of framework holding two different anions only via weak effects as 2 were observed in coordination polymers.  相似文献   

18.
The coordination polymers, {[Co(bbim)2(H2O)2](tcbdc) · 2H2O}n ( 1 ), {[Ni(tcbdc)(bbim)(H2O)2] · 2DMF}n ( 2 ), and {[Cu2(tcbdc)2(bbim)4] · 4H2O}n ( 3 ) [bbim = 1,1′‐(1,4‐butanediyl)bis(imidazole) and tcbdc2– = tetrachlorobenzene‐1,4‐dicarboxylate] were synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, luminescence, and single‐crystal X‐ray diffraction analysis. Complex 1 has a double‐stranded chain structure through doubly bridged [Co(bbim)2] units. Complex 2 exhibits two‐dimensional square grid, whereas complex 3 has a three‐dimensional porous network structure with an unprecedented 44 · 611 topological structure through interpenetrating square grid. The water molecules in complex 3 occupy the vacancy through three kinds of hydrogen bond interactions. Upon excitation at 370 nm, complexes 1 – 3 present solid‐state luminescence at room temperature.  相似文献   

19.
The asymmetric unit of the title compound, {[Cu(C4O4)(C6H6N2O)2(H2O)2]·2H2O}n, consists of one pyridine‐4‐carbox­amide (isonicotinamide or ina) ligand, one‐half of a squarate dianion, a coordinated aqua ligand and a solvent water mol­ecule. Both the CuII and the squarate ions are located on inversion centers. The CuII ions are octa­hedrally surrounded by four O atoms of two water mol­ecules and two squarate anions, and by two N atoms of the isonicotinamide ligands. The crystal structure contains chains of squarate‐1,3‐bridged CuII ions. These chains are held together by N—H⋯O and O—H⋯O inter­molecular hydrogen‐bond inter­actions, forming an extensive three‐dimensional network.  相似文献   

20.
In the title complex, {[Cu(C6H5O3)Cl(H2O)]·H2O}n, the CuII atom has a deformed square‐pyramidal coordination geometry formed by two O atoms of the maltolate ligand, two bridging Cl atoms and the coordinated water O atom. The Cu atoms are bridged by Cl atoms to form a polymeric chain. The deprotonated hydroxyl and ketone O atoms of the maltolate ligand form a five‐membered chelate ring with the Cu atom. Stacking interactions and hydrogen bonds exist in the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号