首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low‐temperature mechanical behavior of semicrystalline polymer blends is investigated. Isotactic polypropylene (iPP) is blended with both Zeigler–Natta polyethylene (PE) and metallocene PE. Transmission electron microscopy (TEM) on failed tensile bars reveals that the predominate failure mode in the Zeigler–Natta blend is interfacial, while that in the metallocene blend is failure of the iPP matrix. The observed change in failure mode is accompanied by a 40% increase in both tensile toughness and elongation at −10 °C. We argue that crystallite anchoring of interfacially entangled chains is responsible for this dramatic property improvement in the metallocene blend. The interfacial width between PE and iPP melts is approximately 40 Å, allowing significant interfacial entanglement in both blends. TEM micrographs illustrate that the segregation of low molecular weight amorphous material in the Zeigler–Natta blend reduces the number and quality of crystallite anchors as compared with the metallocene blend. The contribution of anchored interfacial structure was further explored by introducing a block copolymer at the PE/iPP interface in the metallocene blend. Small‐angle X‐ray scattering (SAXS) experiments show the block copolymer dilutes the number of crystalline anchors, decoupling the interface. Increasing the interfacial coverage of the block copolymer reduces the number of anchored interfacial chains. At 2% block copolymer loading, the low‐temperature failure mode of the metallocene blend changes from iPP failure to interfacial failure, reducing the blend toughness and elongation to that of the Zeigler–Natta blend. This work demonstrates that anchored interfacial entanglements are a critical factor in designing semicrystalline blends with improved low‐temperature properties. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 108–121, 2000  相似文献   

2.
This article discusses the influence of two natural terpene resins (NTR), poly(α‐pinene) (PαP A115) and poly(d‐limonene) (PL C115), on morphology, miscibility, thermal, and dynamic‐mechanical properties of their blends with isotactic polypropylene (iPP). The NTR have interesting physical and chemical properties, and they are approved for food contact application. From the results of differential scanning calorimetry and dynamic‐mechanical thermal analysis it was deduced that both the resins were completely miscible with the amorphous iPP up to the composition investigated here (70/30 wt %). Scanning electron microscopy (SEM) analysis instead showed that the 70/30 iPP/PαP A115 blend and 80/20 and 70/30 iPP/PL C115 blends contained very small domains homogeneously distributed into the matrix. It is hypothesized that the domains are likely formed by the terpene‐rich phase, and the matrix by the iPP‐rich phase (besides the crystallized iPP phase). The iPP‐rich phase and the NTR‐rich phase would have the glass transition temperatures so close that they cannot be resolved by DSC and DMTA. Finally, for the iPP/PαP A115 system an upper critical solution temperature (UCST) is proposed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 867–878, 1999  相似文献   

3.
Using an experimental setup with a three‐phase intersecting boundary of PTFE/PE/iPP, the nucleation power of PTFE compared to iPP on the PE was studied by TEM. It was found that the nucleation of the PE on the PTFE interface started at a higher temperature than epitaxial nucleation of the PE onto the iPP interface. During cooling of the melt, the growth direction of the PE crystalline lamellae changes in a continuous manner from the transcrystallization direction of the PTFE/PE interface into the heteroepitaxial “crosshatched” orientation of the iPP/PE interface. A (still highly speculative) self‐assembly of the PE macromolecules at the respective interface just in front of the actual crystallization edge is used to explain this observed phenomenon. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 80–83, 2000  相似文献   

4.
The in situ microfibrillar blend of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) was fabricated through a slit die extrusion, hot stretch, and quenching process. The morphological observation indicates that while the unstretched blend appears to be a common incompatible morphology, the hot stretched blends present PET in situ fibers whose characteristics, such as diameter and aspect ratio, are dependent on the hot stretching ratio (HSR). When the HSR is low, the elongated dispersed phase particles are not uniform at all. As the HSR is increased to 16.1, well‐defined PET microfibers were generated in situ, whose diameter is rather uniform and is around 0.6 ~ 0.9 μm. The presence of the PET phase shows significant nucleation ability for crystallization of iPP. Higher HSR corresponds to faster crystallization of the iPP matrix, while as HSR is high up to a certain level, its variation has little influence on the onset and maximum crystallization temperatures of the iPP matrix during cooling from melt. Optical microscopy observation reveals that transcrystalline layers form in the microfibrillar blend, in which the PET microfibers play as the center row nuclei. In the as‐stretched microfibrillar blends, small‐angle X‐ray scattering measurements show that matrix iPP lamellar crystals have the same orientation as PET lamella. The long period of lamellar crystals of iPP is not affected by the presence of PET micofibers. Wide‐angle X‐ray scattering reveals that the β phase of iPP is obtained in the as‐stretched blends, whose concentration increases with the increase of the HSR. This suggests that finer PET microfibers can promote the occurrence of the β phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4095–4106, 2004  相似文献   

5.
The battery separator plays a key role in determining the capacity of the battery. Since separator performance mainly depends on the pore size of membrane, development of a technique for the fabrication of the membrane having controlled pore size is essential in producing a highly functional battery separator. In this study, microporous membranes having the desired pore size were produced via thermally‐induced phase separation (TIPS) process. Control of the phase boundaries of polymer‐diluent blends is the main concern in manipulating pore size in TIPS process, because pore size mainly depends on the temperature gap between phase separation temperature of the blend and the crystallization temperature of polymer. Microporous membranes having controlled pore size were produced from polyethylene (PE)/dioctyl phthalate (DOP) blends, PE/isoparaffin blends, and polymer/diluent‐mixture ternary blends, that is, PE/(DOP/isoparaffin) blends. PE/DOP binary blends and PE/(DOP/isoparaffin) ternary blends exhibited typical upper critical solution temperature (UCST) type phase behavior, while PE formed a homogeneous mixture with isoparaffin above the crystallization temperature of PE. When the mixing ratio of polymer and diluent‐mixture was fixed, the phase separation temperature of PE/diluent‐mixture blend first increased with increasing DOP content in the diluent‐mixture, went through a maximum centered at about 80 wt % DOP and then decreased. Furthermore, the phase separation temperatures of the PE/diluent‐mixture blends were always higher than that of the PE/DOP blend when diluent‐mixture contained more than or equal to 20 wt % of DOP. Average pore size of microporous membrane prepared from PE/DOP blend and that prepared from PE/isoparaffin blend were 0.17 and 0.07 μm, respectively. However, average pore size of microporous membrane prepared from ternary blends was varied from 0.07 to 0.5 μm by controlling diluent mixing ratio. To understand the phase behavior of ternary blend, phase instability of the ternary mixture was also explored. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2025–2034, 2006  相似文献   

6.
A general approach, based on the polymer reference interaction site model (PRISM) integral equation theory, suitable for characterizing arbitrarily complex polyolefin melts is described. We tested the method by calculating the melt structures of linear polyethylene (PE) and isotactic polypropylene (iPP) and the spinodal decomposition temperatures for PE/iPP blends. The computational expense of the PRISM calculation was reduced with a single‐site united atom model in which the polyolefin CH, CH2, and CH3 groups were approximated as chemically equivalent sites with spherically symmetric energetic interactions. The site–site interactions were defined by a potential function comprising a hard core with an attractive Lennard–Jones term. These energetic parameters were optimized with a central composite design strategy that enabled a simultaneous fit of experimental melt density and structure factor data. Values were obtained for PE and iPP individually and for common universal parameters that could potentially be used for all polyolefins. The rotational isomeric state–metropolis Monte Carlo (RMMC) technique was used to generate sets of conformers at specified temperatures covering the melt‐temperature range of the polymers. The characteristic ratio was used to assess the quality of the conformers and the RMMC method. Values of 9.68 for PE and 9.27 for iPP were obtained. The single‐chain structure factors calculated by the RMMC method were used to calculate the total structure factor for each melt. These were validated against published X‐ray diffraction results. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1803–1814, 2001  相似文献   

7.
In this work, as a part of a long‐term project aimed at controlling of crystal structure and phase morphology for a injection molded product, we investigated the oriented structure and possible epitaxial growth of polyolefin blend (low‐density polyethylene (LLDPE)/isotatic polypropylene (iPP)), achieved by dynamic packing injection molding, which introduced strong oscillatory shear on the gradually‐cooled melt during the packing process. The crystalline and oriented structures of the prepared blends with different compositions were estimated in detail through 2D X‐ray diffraction, calorimetry, and optical microscopy. As iPP was the dominant phase (its content was more than 50 wt%), our results indicated that it could be highly oriented in the blends. In such case, it was interesting to find that LLDPE epitaxially crystallized on the oriented iPP through a crystallographic matching between (100)LLDPE and (010)iPP, resulting in an inclination of LLDPE chains, about 50° to the iPP chain axis. On the other hand, as iPP was the minor phase, iPP was less oriented and no epitaxial growth between iPP and LLDPE was observed; even LLDPE remained oriented. The composition‐dependent epitaxial growth of LLDPE on oriented iPP could be understood as due to: (1) the effect of crystallization sequence, it was found that iPP always crystallized before LLDPE for all compositions; (2) the dependence of oriented iPP structure on the blend composition; (3) the “mutual nucleation” between LLDPE and iPP due to their partial miscibility. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Crystallization of semi-crystalline polyolefins (i-polypropylenes and HD-polyethylenes) in their blends with amorphous cycloolefin copolymers (COC) were studied. The thermal behaviour of the blends was characterized by Differential Scanning Calorimetry (DSC) whereas blend morphologies were investigated by Scanning Electronic Microscopy (SEM). In iPP/COC blends, a phenomenon of fractionated crystallization is evidenced when i-PP is finely dispersed in the COC matrix. Such a behavior is generally observed when the number of droplets is much larger than the number of heterogeneities originally present in the bulk polymer. In HDPE/COC blends, complex morphologies are observed which do not fit good correlation with DSC results. The nucleation and crystallization modes seem to be largely influenced by the characteristics of the micro-dispersed phase, largely dependent on the PE molecular weights and polydispersity indices.  相似文献   

9.
In this study, the effects of crystallization conditions (cooling rate and end temperature of cooling) on crystallization behavior and polymorphic composition of isotactic polypropylene/multi‐walled carbon nanotubes (iPP/MWCNTs) composites nucleated with different concentrations of β‐nucleating agent (tradename TMB‐5) were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and scanning electronic microscopy (SEM). The results of DSC, WAXD and SEM revealed that the addition of MWCNTs and TMB‐5 evidently elevates crystallization temperatures and significantly decreases the crystal sizes of iPP. Because of the competition between α‐nucleation (provided by MWCNTs) and β‐nucleation (induced by TMB‐5), the β‐phase crystallization takes place only when 0.15 wt% and higher concentration of TMB‐5 is added. Non‐isothermal crystallization kinetics study showed that the crystallization activation energy ΔE of β‐nucleated iPP/MWCNTs composites is obviously higher than that of pure iPP, which slightly increases with the increase of TMB‐5 concentration, accompanying with the transition of its polymorphic crystallization behavior. The results of non‐isothermal crystallization and melting behavior suggested that the cooling rate and end temperature of cooling (Tend) are important factors in determining the proportion and thermal stability of β‐phase: Lower cooling rate favors the formation of less amount of β‐phase with higher thermal stability, while higher cooling rate encourages the formation of higher proportion of β‐phase with lower thermal stability. The Tend = 100°C can eliminate the β–α recrystallization during the subsequent heating and therefore enhance the thermal stability of the β‐phase. By properly selecting TMB‐5 concentration, cooling rate and Tend, high β‐phase proportion of 88.9% of the sample was obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Summary: Shear‐induced crystallization in a blend of isotactic poly(propylene) and poly(ethylene‐co‐octene) (iPP/PEOc) has been investigated by means of in‐situ optical microscopy and a shear hot stage under various thermal and shear histories. Cylindrites are observed after shear in the phase‐separated iPP/PEOc blends for the first time. The nuclei (shish) come from the orientation of the entangled network chains, and the relationship between the shear rate and the network relaxation time of the oriented iPP chains is a very important factor that dominates the formation of the cylindrites after liquid‐liquid phase separation. The cylindrites can grow through phase‐separated domains with proper shear rate and shear time. In addition, the number of spherulites increases with shear rate, which is consistent with the notion of fluctuation‐induced nucleation/crystallization.

Phase‐contrast optical micrograph of the iPP/PEOc = 50/50 (wt.‐%) sample sheared during cooling with shear rate of 10 s−1 and isothermally crystallized at 140 °C for 142 s after isothermal annealing at 170 °C for 420 min. The shear time is 180 s.  相似文献   


11.
A thermodynamic simulation of the phase‐separation process of an off‐critical blend, based on a thermoplastic matrix with a reactive epoxy system undergoing polycondensation at a constant temperature, was performed. The model considered the composition dependence of the interaction parameter, χ(T2) (where T is the temperature and Φ2 is the volume fraction of polystyrene), along with the polydispersity of both polymers. For every level of conversion, the simulation provided the amount, composition, stoichiometric ratio, and conversion of each phase present. The accuracy of the model was proved by the good agreement between the experimental and predicted glass‐transition temperatures and heat capacity changes at the glass‐transition temperatures for both phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1361–1368, 2004  相似文献   

12.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

13.
The analysis of a thermoplastic polymer blend requires a precise separation of the blend components, which is usually performed by selective solvent extraction. However, when the components are high‐molecular‐weight polymers, a complete separation is very difficult. The use of fluids in near critical and supercritical conditions becomes a promising alternative to reach a much more precise separation. In this work, a method to separate reactive and physical blends from high‐molecular‐weight commercial polymers is proposed. Polyethylene (PE)/polystyrene (PS) blends were separated into their components with n‐propane, n‐pentane, and n‐heptane at near critical and supercritical conditions. The selectivity of each solvent was experimentally studied over a wide range of temperatures for assessing the processing windows for the separation of pure components. The entire PE phase was solubilized by n‐pentane and n‐heptane at similar temperatures, whereas propane at supercritical conditions could not dissolve the fraction of high‐molecular‐weight PE. The influence of the blend morphology and composition on the efficiency of the polymer separation was studied. In reactive blends, the in situ copolymer formed was solubilized with the PE phase by chemical affinity. The method proposed for blend separation is easy, rapid, and selective and seems to be a promising tool for blend separation, particularly for reactive blends, for which the isolation of the copolymer is essential for characterization © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2361–2369, 2005  相似文献   

14.
The mechanism of adhesion at semicrystalline polymer interfaces between isotactic polypropylene (iPP) and linear low‐density polyethylene (PE) was studied with transmission electron microscopy (TEM) and an asymmetric‐double‐cantilever‐beam test. From the TEM images, both the interfacial width and the lamellar thickness of the polymers were extracted. During annealing, the interfacial width increased with the annealing temperature, and this indicated the accumulation of amorphous polymers at the interface. The interfacial strength, determined from the critical fracture energy (Gc), also increased with the annealing temperature and reached a maximum above the melting temperatures of iPP and PE, whereas the smallest Gc value was obtained below the melting temperatures of the two materials. A mechanism of interfacial strengthening was proposed accounting for the competition between the interdiffusion of PE and crystallization of iPP. As the annealing temperature increased, the rates of PE diffusion and iPP crystallization increased. Although the crystallization of iPP hindered the interdiffusion of PE, both the interfacial width and the fracture energy increased with the temperature, and this indicated that PE interdiffusion dominated iPP crystallization. Below the critical temperature, the fracture surfaces of both iPP and PE were smooth, and chain pullout dominated the fracture mechanism. Above the critical temperature, iPP crystallization still hindered the interdiffusion, and crazes could be seen on the iPP side. Above the melting temperatures of the two materials, ruptured surfaces could also be seen on the PE side, and crazing was the fracture mechanism. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2667–2679, 2004  相似文献   

15.
The crystallization and phase morphology of the injection‐molded isotactic polypropylene (iPP)/syndiotactic polypylenen (sPP) blends were studied, focusing on the difference between the skin layer and core layer. The distribution of crystallinity of PPs in the blends calculated based upon the DSC results shows an adverse situation when compared with that in the neat polymer samples. For 50/50 wt % iPP/sPP blend, the SEM results indicated that a dispersed structure in the skin layer and a cocontinuous structure in the core layer were observed. A migration phenomenon that the sPP component with lower crystallization temperature and viscosity move to the core layer, whereas the iPP component with higher crystallization temperature and viscosity move to the skin layer, occurred in the iPP/sPP blend during injection molding process. The phenomenon of low viscosity content migrate to the low shear zone may be due to the crystallization‐induced demixing based upon the significant difference of crystallization temperature in the sPP and iPP. This migration caused the composition inhomogeneity in the blend and influenced the accuracy of crystallinity calculated based upon the initial composition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2948–2955, 2007  相似文献   

16.
Although under normal conditions only the crystallization behavior of PE on oriented iPP substrates can be studied due to the higher melting point of iPP, the faster crystallization rate of a molten, oriented HDPE film compared to a nonoriented iPP layer was used to study the crystallization of iPP on the oriented HDPE film by means of transmission electron microscopy (TEM) and electron diffraction (ED). Besides the known epitaxial relationship of HDPE/iPP with their chains 50° apart, two new orientation relationships with (a) chains of both polymers parallel and (hk0)iPP in contact with the HDPE substrate, and (b) the a‐axis of iPP crystals parallel to the chain direction of HDPE but (001)iPP in contact with the HDPE substrate were observed. Both orientations are assumed as graphoepitaxy. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1893–1898, 1999  相似文献   

17.
In this article, epitaxial structures have been successfully obtained in the isotactic polypropylene (iPP)/polyethylene (PE) blends by an accessible injection molding methods. By studying a series of iPP/PE blends, the evolution of the epitaxial growth of PE lamellae on the oriented iPP lamellae has been detailedly discussed via wide‐angle X‐ray diffraction, small‐angle X‐ray scattering, scanning electron microscopy and differential scanning calorimetry. Unexpectedly, the exactly epitaxial angles between peculiarly arranged PE lamellae and oriented PP lamellae are all larger than the classical epitaxy theory value of 50°, and it even increases gradually with increasing PP content. It is inferred that the special crystallization of PE is the consequence of joint construction of the oriented PP crystals and the continuous intense shear field provided by pressure vibration injection molding. The epitaxial structures play a positive role in the interfacial connection between two components; thus, the mechanical properties of the blends are improved. This work provides an insight understanding on the formation mechanism of the epitaxy crystallization under shear field. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The phase behaviors of the hexane + polydispersed polyethylene (PE) systems were measured to clarify the effect of the molecular weight distribution (MWD) of PE on liquid-liquid (LL) phase boundaries. The weight fraction for the PE portion of a maximum LL phase separation pressure in the LL phase boundary decreased as the polydispersity of PE increased. Moreover, depression of the phase separation pressure from the maximum phase separation pressure on the higher PE weight fraction side was more drastic as the polydispersity of the PE increased. The LL phase boundaries were correlated using the Sanchez-Lacombe equation of state (S-L EOS). For the correlations, the polydispersed PEs were regarded as mixtures of 16 types of monodispersed PEs with different molecular weights, and the characteristic parameters of the S-L EOS, P*, ρ* and T*, were assigned the same values for all monodispersed PEs even though the molecular weights differed. However, the interaction parameters of the hexane-PE pairs depended on the molecular weight of the PE and the temperature. The correlated results capably reproduced the effect of the MWD of the PE on the LL phase boundaries for the hexane + polydispersed PE systems.  相似文献   

19.
Summary: Effect of density, and hence pressure, on the miscibility of a 50:50 mol/mol PE/PEP blend was studied using a coarse‐grained MC simulation approach on a high‐coordination lattice, with the conformations of the coarse‐grained chains constrained by the RIS model. Interchain pair correlation functions are used to assess the miscibility of the mixtures. Miscibility increases with increasing temperature over the range −50–150 °C. It is rather insensitive to pressure at high temperatures, but at −50 °C, the blend miscibility increases with decreasing pressure. The findings are consistent with the fact that the blend is an UCST blend and that the simulation temperatures used, except −50 °C, were considerably higher than the UCST of the blend. The pressure dependence of the blend miscibility observed near −50 °C is also in agreement with the experimental observation that the blend exhibits a negative volume change of mixing. The present work demonstrates that the coarse‐grained MC approach, when it is used with periodic boundary cells of different sizes filled with the same number of chains, is capable of capturing the pressure dependence of UCST blends. In addition, such a simulation also provides us with insights about the molecular origin of the observed pressure dependence of miscibility. In the present case, the segregation of PE and PEP chains at low temperatures and high pressure simply originates from the fact that fully extended segments of PE chains tend to cluster so that their intermolecular interactions can be maximized. As the temperature increases, there is a decrease in the probability of a trans state at a C C bond in PE, and therefore the attraction between the PE chains is reduced at higher temperatures, promoting miscibility and the UCST behavior.

Density (pressure) dependence of the 2nd shell pair correlation function values for a 50/50 PE/PEP blend at −50 °C.  相似文献   


20.
With laser scanning confocal fluorescence microscopy, we demonstrate a novel type of morphology evolution in moderately thick films (70–100 μm) of ternary blends of polypropylene (PP), polyethylene (PE), and ethylene–propylene rubber (EPR), in which EPR is labeled with a benzothioxanthene dye (HY‐EPR). The blends are prepared by solution blending, and the phase morphology evolves during the annealing of the blend films in a stainless steel mold. Our results indicate that wetting of the mold surface is a driving force in morphology evolution for the two blend compositions investigated. For 81/14/5 PP/PE/HY‐EPR, phase evolution within the mold results in a laminar structure and hydrodynamic channels, features which have previously been found in thin films of polymer blends as a result of surface‐directed spinodal decomposition. In a blend with a lower weight fraction of the dispersed phase (92/7/1 PP/PE/HY‐EPR), we find that the PE/HY‐EPR domains are larger and more polydisperse closer to the surface because of wetting of the mold wall. We also show that the phase morphology in these films can be controlled by the nature of one or both of the surfaces being varied. When one of the mold surfaces is replaced with a thin film of PP homopolymer, we observe draining of PE/HY‐EPR from the PP to the mold surface, which results in a bilayer structure. A trilayer morphology is likewise obtained by the replacement of both mold surfaces with PP. We also carry out three‐dimensional image reconstruction on a single PE/HY‐EPR particle within the 81/14/5 PP/PE/HY‐EPR blend to obtain detailed information on the interphase structure. We find that HY‐EPR of this composition (30/70 ethylene/propylene) fully coats the PE dispersed phase and partially penetrates the PE droplets. This result falls between the interphase structures found for previously investigated EPR compositions (40/60 and 80/20 ethylene/propylene). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 637–654, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号