首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the reactions of 1,2‐diaza‐1,3‐dienes 1 with acceptor‐substituted carbanions 2 have been studied at 20 °C. The reactions follow a second‐order rate law, and can be described by the linear free energy relationship log k(20 °C)=s(N+E) [Eq. (1)]. With Equation (1) and the known nucleophile‐specific parameters N and s for the carbanions, the electrophilicity parameters E of the 1,2‐diaza‐1,3‐dienes 1 were determined. With E parameters in the range of ?13.3 to ?15.4, the electrophilic reactivities of 1 a–d are comparable to those of benzylidenemalononitriles, 2‐benzylideneindan‐1,3‐diones, and benzylidenebarbituric acids. The experimental second‐order rate constants for the reactions of 1 a – d with amines 3 and triarylphosphines 4 agreed with those calculated from E, N, and s, indicating the applicability of the linear free energy relationship [Eq. (1)] for predicting potential nucleophilic reaction partners of 1,2‐diaza‐1,3‐dienes 1 . Enamines 5 react up to 102 to 103 times faster with compounds 1 than predicted by Equation (1), indicating a change of mechanism, which becomes obvious in the reactions of 1 with enol ethers.  相似文献   

2.
3.
4.
5.
The cycloaddition of organic azides with some conjugated enamines of the 2‐amino‐1,3‐diene, 1‐amino‐1,3‐diene, and 2‐aminobut‐1‐en‐3‐yne type is investigated. The 2‐morpholinobuta‐1,3‐diene 1 undergoes regioselective [3+2] cycloaddition with several electrophilic azides RN3 2 ( a , R=4‐nitrophenyl; b , R=ethoxycarbonyl; c , R=tosyl; d , R=phenyl) to form 5‐alkenyl‐4,5‐dihydro‐5‐morpholino‐1H‐1,2,3‐triazoles 3 which are transformed into 1,5‐disubstituted 1H‐triazoles 4a , d or α,β‐unsaturated carboximidamide 5 (Scheme 1). The cycloaddition reaction of 4‐[(1E,3Z)‐3‐morpholino‐4‐phenylbuta‐1,3‐dienyl]morpholine ( 7 ) with azide 2a occurs at the less‐substituted enamine function and yields the 4‐(1‐morpholino‐2‐phenylethenyl)‐1H‐1,2,3‐triazole 8 (Scheme 2). The 1,3‐dipolar cycloaddition reaction of azides 2a – d with 4‐(1‐methylene‐3‐phenylprop‐2‐ynyl)morpholine ( 9 ) is accelerated at high pressure (ca. 7–10 kbar) and gives 1,5‐disubstituted dihydro‐1H‐triazoles 10a , b and 1‐phenyl‐5‐(phenylethynyl)‐1H‐1,2,3‐triazole ( 11d ) in significantly improved yields (Schemes 3 and 4). The formation of 11d is also facilitated in the presence of an equimolar quantity of tBuOH. The three‐component reaction between enamine 9 , phenyl azide, and phenol affords the 5‐(2‐phenoxy‐2‐phenylethenyl)‐1H‐1,2,3‐triazole 14d .  相似文献   

6.
Change the ligand, change the stereochemistry : 2,3‐Bis(acetoxy)‐1,3‐dienes are obtained in a stereocontrolled manner by a novel tandem 1,2‐/1,2‐bis(acetoxy) rearrangement (see scheme, R1 and R2 are δ+ stabilizing). Upon stabilization of the reaction intermediates, the ligand attached to gold controls the stereochemistry of the alkene in the second acetate migration, that is, N‐heterocyclic carbenes (NHC) favor cis alkenes, whereas phosphine ligands selectively afford trans olefins.

  相似文献   


7.
A general method is described for the synthesis of sterically encumbered porphyrins whose shielding superstructure can take on the enzymatic role of substrate discrimination. This method is based on an improved synthesis of pyrroles substituted with a 2,6‐dibromophenyl group, followed by a Suzuki cross‐coupling to replace the Br with aryl groups. Porphyrins assembled from such pyrrole units have a barrel shape with the metal center completely fenced by four β‐substituted terphenyl shielding wings. The Fe and Mn porphyrins prove to be excellent catalysts for regioselective epoxidation of alkenes.  相似文献   

8.
9.
The formal [2+2] cycloaddition–retroelectrocyclization (CA–RE) reactions between tetracyanoethylene (TCNE) and strained, electron‐rich dibenzo‐fused cyclooctynes were studied. The effect of ring strain on the reaction kinetics was quantified, revealing that the rates of cycloaddition using strained, cyclic alkynes are up to 5500 times greater at 298 K than those of reactions using unstrained alkynes. Cyclobutene reaction intermediates, as well as buta‐1,3‐diene products, were isolated and their structures were studied crystallographically. Isolation of a rare example of a chiral buta‐1,3‐diene that is optically active and configurationally stable at room temperature is reported. Computational studies on the enantiomerization pathway of the buta‐1,3‐diene products showed that the eight‐membered ring inverts via a boat conformer in a ring‐flip mechanism. In agreement with computed values, experimentally measured activation barriers of racemization in these compounds were found to be up to 26 kcal mol?1.  相似文献   

10.
Unactivated alkynes reacted with 1,4-dilithio-1,3-diene derivatives in the presence of FeCl3 affording substituted benzene derivatives via a formal[4 2] cycloaddition.  相似文献   

11.
Efficient and easily reproducible synthesis of sterically hindered multibrominated corroles is achieved via dipyrromethane-aldehyde condensation reaction in good yields.Boron trifluoride dietherate(BF_3-Et_2O) is found to be the effective catalyst for cyclization reaction,giving corrole as the major product.  相似文献   

12.
The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor‐substituted pentacyano‐ (PCBD) or tetracyanobuta‐1,3‐dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP‐S‐PCBD ( 1 ), ZnP‐S‐TCBD ( 2 ), ZnP‐TCBD ( 3 ), ZnP‐(S‐PCBD)2 ( 4 ), and ZnP‐(S‐TCBD)2 ( 5 ). By means of steady‐state and time‐resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer ( 1 , 4 ), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD ( 2 , 5 ), photoinduced electron transfer occurs in benzonitrile, generating a charge‐separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=?1.39 eV), suggests a back‐electron transfer process occurring in the so‐called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor–acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron‐accepting cyanobuta‐1,3‐dienes might become promising alternatives to quinone‐, perylenediimide‐, and fullerene‐derived acceptors in multicomponent modules featuring photoinduced electron transfer.  相似文献   

13.
A variety of 6‐(trichloromethyl)salicylates (=2‐hydroxy‐6‐(trichloromethyl)benzoates) were prepared by TiCl4‐mediated cyclization of 1,3‐bis(trimethylsilyloxy)buta‐1,3‐dienes with 1,1,1‐trichloro‐4,4‐dimethoxybut‐3‐en‐2‐one. The employment of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) as Lewis acid resulted in the formation of trichloromethyl‐substituted cyclohexenones. The cyclizations proceeded with good‐to‐very‐good regioselectivities.  相似文献   

14.
15.
Herein, we present a strategy for the formation of 2‐fluoro‐1,3‐diene derivatives via rhodium‐catalyzed direct C(sp2)—C(sp2) cross‐coupling of gem‐difluoroalkenes and acrylamides. By merging Rh(III)‐catalyzed C(sp2)–H bond activation and nucleophilic addition/F‐elimination of gem‐difluoroalkene, an efficient defluorinative vinylation reaction is uncovered, which leads to the generation of 2‐fluoro‐1,3‐dienes in moderate to good yields with excellent stereoselectivity under mild conditions. Preliminary mechanistic study suggests unique effects of fluorine substituents which allow the reactivity profile not observed with the congeners bearing heavier halides.  相似文献   

16.
Three 1,3‐bridged polycyclic cyclopropenes, exo‐8‐oxatricyclo[3.2.1.02,4]octa‐2,6‐diene ( 10 ), endo‐8‐oxatricyclo[3.2.1.02,4]octa‐2,6‐diene ( 11 ), and exo‐6,7‐benzo‐1,5‐diphenyl‐8‐oxatricyclo[3.2.1.02,4]octa‐2,6‐diene ( 12 ), have been synthesized by elimination of 2‐chloro‐3‐trimethylsilyl‐8‐oxatricyclo[3.2.1.02,4]‐oct‐6‐enes, 17 , 18 and 30 , which were generated from 1‐chloro‐3‐trimethylsilylcyclopropene with furan and diphenylisobenzofuran. We have demonstrated a facile route to synthesize the highly strained 1,3‐fused polycyclic cyclopropenes, 10 , 11 , and 12 . The stereochemistry of the Diels‐Alder reactions of cyclopropene 16 with furan and DPIBF are different. Cyclopropene 16 was treated with furan to form exo‐exo and endo‐exo adducts (5:2) and treated with DPIBF to generate an exo‐exo adduct. Compounds 10 , 11 and 12 undergo isomerization reactions to form benzaldehyde and phenyl 4‐phenyl‐[1]naphthyl ketone to release strain energies via diradical mechanisms.  相似文献   

17.
The reactions of 2,3‐dichloro‐1,4‐diphospha‐1,3‐butadiene, which is sterically protected with the 2,4,6‐tri‐t‐butylphenyl group, with some nucleophiles, including alkyllithium reagents and lithium aluminum hydrides, afforded 1,2‐diphosphinoacetylenes or 3‐phosphino‐1‐phosphaallenes. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:171–176, 2000  相似文献   

18.
Reactions of selenazadienes with chloroacetonitrile yielded 1,3‐selenazol‐5‐carbonitriles in moderate to high yields. Reactions of the selenazadienes with chloroacetyl chloride and then with amines gave 1,3‐sele‐nazole‐5‐carboxamides.  相似文献   

19.
When treated with electrophilic m‐CPBA reagent, dienes 1 were efficiently epoxidized at the silylated 1,2‐double bond exclusively. Otherwise, regioselective cyclopropanation of the phosphonylated 3,4‐double bond was achieved by using the nucleophilic Corey's reagent. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10:231–236, 1999  相似文献   

20.
Two salts of acyclic Schiff base cationic ligands, namely N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride monohydrate, C17H22N4O42+·2Cl·H2O, (I), and 2‐hydroxy‐N,N′‐bis(2‐nitrobenzyl)propane‐1,3‐diammonium dichloride, C17H22N4O52+·2Cl, (II), were synthesized as precursors in order to obtain new acyclic and macrocyclic multidentate ligands and complexes. The cation conformations in compounds (I) and (II) are different in the solid state, although the cations are closely related chemically. Similarly, the hydrogen‐bonding networks involving ammonium cations, hydroxyl groups and chloride anions are also different. In the cation of compound (II), the hydroxyl group is disordered over two sets of sites, with occupancies of 0.785 (8) and 0.215 (8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号