首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
But‐3‐en‐1‐ol has been pre‐protected by triisobutylaluminium and terpolymerized with ethylene and norbornene by rac‐[Et(Ind)2]ZrCl2/MAO catalysts. The strong polarity of diisobutyl(but‐3‐en‐1‐oxy)aluminum causes a slight reduction in the catalyst activity and yields a small fraction of crystallinity. The but‐3‐en‐1‐ol content in the terpolymer is as high as 3.2% and can be readily adjusted by varying the reaction conditions. When the norbornene/ethylene ratio is over 10, the norbornene incorporation efficiency is not affected by the polar monomer and is close to that of the copolymerization. Similar to the ethylene/norbornene copolymers, the thermal properties of the obtained terpolymers are mainly determined by their norbornene contents.

  相似文献   


2.
Summary: Ethylene and 10‐undecen‐1‐ol have been successfully copolymerized by an organically modified montmorillonite (OMMT)‐intercalated metallocene catalyst, Et[Ind]2ZrCl2, activated by methylaluminoxane (MAO). The obtained hydroxy‐functionalized polyethylene (PE‐OH)/OMMT nanocomposites exhibit enhanced structural stability as compared with the neat PE‐based ones, with no significant collapse of the nanocomposite structure being detected by WAXD examination after high‐temperature processing. The simultaneous polyolefin functionalization provides an effective and convenient solution to stabilize the PE/MMT nanocomposite structure formed by in‐situ polymerization.

  相似文献   


3.
A nucleation agent, 1,3,2,4‐dimethylbenzylidene sorbitol (DMBS), was used as a support for C2‐symmetric metallocene rac‐Me2Si[2‐Me‐4‐Naph‐Ind]2ZrCl2. Propylene polymerization with the supported catalyst resulted in i‐PP polymers with granular morphology. The role of a catalyst support ensures a good dispersion of the nucleation agent in the formed i‐PP matrix. The employment of a nucleation agent as catalyst support provides a unique solution to in‐reactor compounding metallocenic i‐PP/nucleation agent compositions.

  相似文献   


4.
Summary: We report a simple method for tuning catalytic property of a metallocene‐based catalyst, Cp2ZrCl2, for ethylene polymerization by the direct adsorption of Cp2ZrCl2 onto multi‐walled carbon nanotubes (MWCNTs). The direct interactions between MWCNTs and the Cp rings of Cp2ZrCl2 controlled the polymerization behaviors, and we could generate polyethylene with an extremely high molecular weight ( = 1 000 000) at 30 °C and under 1 atm of ethylene gas.

Preparation of Cp2ZrCl2‐MWCNT.  相似文献   


5.
Homogeneous surface coating of multi‐walled carbon nanotubes is achieved for the first time by in situ copolymerization of ethylene (E) and 2‐norbornene (N) as catalyzed directly from the nanotube surface previously treated by a highly active metallocene‐based complex, i.e., rac‐Et(Ind)2ZrCl2/MMAO‐3A. The copolymerization reaction allows for the destructuration of the native nanotube bundles, which upon further melt blending with an ethylene–vinyl acetate copolymer (27 wt.‐% vinyl acetate) matrix, leads to high‐performance polyolefinic nanocomposites. The microstructural analysis of the surface‐coating copolymer was carried out by 13C NMR spectroscopy and allowed determination of the actual N content incorporated along the chains. Depending on the experimental conditions used (e.g., E pressure, solvent, feed N concentration) the relative quantity of E–N copolymer can be tuned, as well as the N content in the formed copolymers and accordingly their glass transition temperature.

  相似文献   


6.
Anionic conjugated polymer (PFP‐SO) was assembled with a novel enzymatic substrate 6‐O‐modified PNP‐β‐galactoside ( 1 ) for sensitive multiplex enzyme detections. The PFP‐SO/ 1 /lipase/β‐galactosidase system has two chemical input signals which are Input 1 (lipase) and Input 2 (β‐galactosidase), and output optical signals such as fluorescence emission at 416 nm or 450 nm. Four types of logic gates, including YES, INH, NAND and AND, were successfully constructed and utilized for multiplex detections of lipase and β‐galactosidase in one tube.

  相似文献   


7.
8.
Propylene was copolymerized with allylanisole (AA) using Me2Si(Ind)2ZrCl2 and Et(Ind)2ZrCl2, and the methylaluminoxane MAO cocatalyst at 70 °C and a cocatalyst to catalyst (Al:Zr) molar ratio of 1 000. It was fed at 8.5 bar(g). The weight‐average molecular weight, , for both metallocenes decreased as the AA feed concentration increased. Therefore, allylanisole acted as an in situ chain transfer agent. The chain transfer constants, ktr/kp, of AA for Et(Ind)2ZrCl2 and Me2Si(Ind)2ZrCl2 turned out to be 0.33 and 0.40, respectively. The characterization of the resulting products by 1H NMR demonstrated that AA end‐capped the isotactic poly(propylene) chains which showed to be low molecular weight oligomers; 4.96 × 103 ≤ ≤ 9.80 × 103. An appropriate chain transfer mechanism for AA has been proposed.

  相似文献   


9.
The monomer 3‐ethyl‐1‐vinyl‐2‐pyrrolidone ( 3 ) and the homopolymer poly(3‐ethyl‐1‐vinyl‐2‐pyrrolidone) ( 5 ) have been synthesized. Polymer 5 is soluble in water and shows a critical temperature (Tc) of 27 °C. The presence of cyclodextrin causes a slight shift of the Tc. The lower critical solution temperature (LCST) could be varied between 27 and 40 °C by copolymerization with N‐vinyl‐2‐pyrrolidone. A linear correlation between the Tc and the copolymer composition is observed.

  相似文献   


10.
A novel synthetic method combining chemo and enzymatic synthesis strategies was employed to prepare a vinyl acetate type monomer, 6‐(4‐methoxybiphenyl‐4′‐oxy)hexyl vinyl hexanedioate (VA‐LC). Homo‐ and copolymers of VA‐LC with maleic anhydride (MAn) were prepared by conventional free radical polymerization using 2,2′‐azobisisobutyronitrile (AIBN) and 1,1′‐azobis (cyclohexane carbonitrile) (AHCN) as an initiator at 95 and 60 °C, respectively. The thermal properties of the generated polymeric material were investigated by differential scanning calorimetry (DSC), and the optical texture was inspected by polarizing optical microscopy (POM). While the monomer VA‐LC does not exhibit liquid‐crystalline properties, poly(VA‐LC), and the alternating copolymer of VA‐LC with maleic anhydride both displayed such properties.

  相似文献   


11.
Poly(ethylene‐co‐propylene) macromonomer (EPM) was synthesized in a high‐temperature continuous stirred tank reactor (CSTR) with [C5Me4(SiMe2NtBu)]TiMe2 (CGC‐Ti) as the catalyst system. PE samples with EPM long chain branching (LCB) were produced by semi‐batch copolymerization of ethylene and EPM with CGC‐Ti. The LCB frequencies were up to 21.8 EPM side chains per PE backbone. The effects of temperature and ethylene pressure on the degree of EPM grafting and catalyst activity were examined.

Incorporation of EPM into a growing PE chain forming an LCB polymer.  相似文献   


12.
Termination kinetics of methyl methacrylate (MMA) bulk polymerization has been studied via the single pulsed laser polymerization–electron paramagnetic resonance method. MMA‐d8 has been investigated to enhance the signal‐to‐noise quality of microsecond time‐resolved measurement of radical concentration. Chain‐length‐dependent termination rate coefficients of radicals of identical size, k, are reported for 5–70 °C and up to i = 100. k decreases according to the power‐law expression . At 5 °C, kt for two MMA radicals of chain‐length unity is k = (5.8 ± 1.3) · 108 L · mol−1 · s−1. The associated activation energy and power‐law exponent are: EA(k) ≈ 9 ± 2 kJ · mol−1 and α ≈ 0.63 ± 0.15, respectively.

  相似文献   


13.
Summary: A binaphthyl‐bridged salen dichlorozirconium (IV ) complex that displays an octahedral structure with a trans‐O, cis‐N, and cis‐Cl arrangement was synthesized and tested as a precatalyst for ethylene and α‐olefin polymerization. While use of methylaluminoxane (MAO) cocatalyst afforded poor catalytic activity, activation by mixtures of aluminium alkyls such as AliBu3 and either MAO or [CPh3][B(C6F5)4] resulted in reasonable polymerization activities for ethylene, propene, and higher α‐olefins. Quite unexpectedly, while the polymerization of propene results in the production of a high‐molecular‐weight stereoirregular polymer, highly isotactic polymers are obtained under similar conditions from polymerization of 1‐butene, 1‐pentene, and 1‐hexene.

Polymerization employing the binaphthyl‐bridged salen dichlorozirconium (IV ) complex gave unexpected different stereospecificities for the polymerization of propene and higher α‐olefins, to yield ultrahigh‐molecular‐weight atactic poly(propylene) and highly isotactic polymers, respectively.  相似文献   


14.
Summary: The vapor‐based synthesis and characterization of a reactive polymer, poly[(4‐formyl‐p‐xylylene)‐co‐(p‐xylylene)] ( 1 ), have been reported. The reactive polymer coating enables the immobilization of oligosaccharides via the chemoselective aldehyde‐hydrazide coupling reaction.

  相似文献   


15.
The incorporation of 5‐vinyl‐2‐norbornene (VNB) into ethylene‐norbornene copolymer was investigated with catalysts [Ph2C(Fluo)(Cp)]ZrCl2 ( 1 ), rac‐[Et(Ind)2]ZrCl2 ( 2 ), and [Me2Si(Me4Cp)tBuN]TiCl2 ( 3 ) in the presence of MAO by terpolymerizing different amounts of 5‐vinyl‐2‐norbornene with constant amounts of ethylene and norbornene at 60°C. The highest cycloolefin incorporations and highest activity in terpolymerizations were achieved with 1 . The distribution of the monomers in the terpolymer chain was determined by NMR spectroscopy. As confirmed by XRD and DSC analysis, catalysts 1 and 3 produced amorphous terpolymer, whereas 2 yielded terpolymer with crystalline fragments of long ethylene sequences. When compared with poly‐(ethylene‐co‐norbornene), VNB increased both the glass transition temperatures and molar masses of terpolymers produced with the constrained geometry catalyst whereas decreased those for the metallocenes.  相似文献   

16.
Cyclopolymerization of nonconjugated dienes produces poly(methylene‐1,3‐cycloalkanes) and provides a pathway to a number of stereochemically complex polymers. Activation of a diastereomeric mixture of a six‐membered metallacycle complex (rac‐ 1 ) in the presence of 1,5‐hexadiene produced poly(methylene‐1,3‐cyclopentane) (PMCP) with >98% cyclization of the diene monomer. The catalyst was found to cyclopolymerize 1,5‐hexadiene with relatively high activity. The microstructure of the PMCP furnished by rac‐ 1 was found to contain a high proportion of cis‐cyclopentane rings (σ = 0.70–0.74) and a relatively high isotactic content (α = 0.93–0.96). These are the first cis‐enriched isotactic cyclopolymers of 1,5‐hexadiene. Cyclopolymerization of 1,6‐heptadiene with rac‐ 1 /B(C6F5)3 produced poly(methylene‐1,3‐cyclohexane) containing 97% cis‐isotactic rings. This is the first report of this highly isotactic and diastereomerically‐pure microstructure.

  相似文献   


17.
Summary: We have successfully constructed a redox‐responsible hydrogel system by combination of β‐cyclodextrin (β‐CD), dodecyl‐modified poly(acrylic acid) [p(AA/C12)], and a redox‐responsive guest, ferrocenecarboxylic acid (FCA). In the reduced state of FCA, the ternary mixture exhibited a gel‐like behavior, whereas, in its oxidized state, the mixture exhibited a sol behavior.

Conceptual illustration for the redox‐responsive hydrogel system.  相似文献   


18.
A facile two‐step synthesis for branched poly(isoprene)s (PI) based on polyaddition of ABn‐type macromonomers is described. The synthesis of the macromonomers was achieved by anionic polymerization of isoprene and subsequent end‐capping of the polymers by addition of chlorodimethylsilane to the living carbanions. This led to PI‐based macromonomers with narrow polydispersity ( / < 1.15) and molecular weights in the range of 1 700 – 22 100 g · mol−1. Synthesis of the branched polymers was carried out by a hydrosilylation‐based polymerization of the macromonomers. Characterization via SEC, SEC‐MALLS, coupled SEC‐viscosimetry and 1H‐NMR‐spectroscopy supported the formation of branched structures. Interestingly, these branched polymers exhibited α‐values that were similar to those reported for hyperbranched polymers based on AB2‐monomers.

  相似文献   


19.
Summary: The polymerization of ε‐caprolactone (CL) in the presence of HCl · Et2O by an activated monomer mechanism was performed to synthesize diblock or triblock copolymers composed of poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL). The obtained PCLs had molecular weights close to the theoretical values calculated from the CL to PEG molar ratios and exibited monomodal GPC curves. We successfully prepared PEG and PCL block copolymers by a metal‐free method.

The non‐metal catalyzed living ring‐opening polymerisation of ε‐caprolactone by PEG.  相似文献   


20.
Suitably activated, (Cp*){N(tBu)C(Me)N(Et)}ZrMe2 is known to initiate the ‘living’ and isotactic‐selective polymerization of alk‐1‐enes, and it can be used to synthesize block copolymers and stereoblock polymers. We report a full molecular kinetic investigation of propene, but‐1‐ene, and hex‐1‐ene polymerization with a MAO‐activated catalyst system. By combining NMR microstructural polymer analysis with QM modeling of the active species, the complicated regio‐ and stereochemistry of the polyinsertion process, as well as the active chain‐transfer pathways, are investigated. The perspectives and limitations of this catalyst for application in (stereo)block polymerizations are discussed.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号