首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mn(salen)Cl was applied as a low‐cost catalyst for the formation of alkoxyamines from nitroxides and substituted styrenes. These “unimolecular initiators” for nitroxide‐mediated radical polymerization (NMRP) were synthesized using 2,2,6,6‐tetramethyl‐1‐piperidine‐1‐oxyl and 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐oxyl. Functionalized alkoxyamines were obtained from 4‐vinylbenzyl chloride and 4‐vinylbenzyl alcohol. The divinyl compound 1,2‐bis(4‐vinylphenyl)ethane was converted to an alkoxyamine monomer and to bisaminooxy compounds, which can be used as “biradical initiators” for NMRP.

Formation of alkoxyamines using Mn(salen)Cl as the catalyst.  相似文献   


2.
The use of a bisaminooxy compound as initiator for nitroxide‐mediated radical polymerization (NMRP) of styrene or n‐butyl acrylate allows the synthesis of α,ω‐nitroxide‐capped polymers. At high temperatures and with the addition of acetic anhydride, it was found that these polymers could be applied as macroinitiators in the free‐radical polymerization of methyl methacrylate. This enables the synthesis of block copolymers with only minor contents of homopolymer.

The structure of bis‐TIPNO, the bisaminooxy compound used as an initiator for the nitroxide‐mediated radical polymerization of styrene or n‐butyl acrylate.  相似文献   


3.
A new dialkylated α‐hydrogenated linear nitroxide and the corresponding 1‐phenylethyl alkoxyamine were synthesized in two and three steps, respectively. The alkoxyamine was involved in the polymerization of styrene at 60 °C, and the in situ concentration of nitroxide was monitored by electron spin resonance spectroscopy. The enhanced characteristics of these new alkylated alkoxyamine and nitroxide (k = 1.5 × 10?4 s?1 and k = 5.7 × 104 L mol?1 s?1) yielded a monomer consumption one order of magnitude higher than styrene thermal polymerization. This resulted in well‐defined polystyrenes up to 70,000 g mol?1 and the observation of a control occurring through the establishment of the radical persistent effect, that is, ln([M]0/[M]) = t2/3. Experimentally determined kinetic constants were involved in PREDICI modelings to investigate the influence of temperature and initial alkoxyamine concentration on the kinetics as well as on the livingness and the controlled character of the polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Summary: The range of validity of two popular versions of the nitroxide quasi‐equilibrium (NQE) approximation used in the theory of kinetics of alkoxyamine mediated styrene polymerization, are systematically tested by simulation comparing the approximate and exact solutions of the equations describing the system. The validity of the different versions of the NQE approximation is analyzed in terms of the relative magnitude of (dN/dt)/(dP/dt). The approximation with a rigorous NQE, kc[P][N] = kd[PN], where P, N and PN are living, nitroxide radicals and dormant species respectively, with kinetic constants kc and kd, is found valid only for small values of the equilibrium constant K (10−11–10−12 mol · L−1) and its validity is found to depend strongly of the value of K. On the other hand, the relaxed NQE approximation of Fischer and Fukuda, kc[P][N] = kd[PN]0 was found to be remarkably good up to values of K around 10−8 mol · L−1. This upper bound is numerically found to be 2–3 orders of magnitude smaller than the theoretical one given by Fischer. The relaxed NQE is a better one due to the fact that it never completely neglects dN/dt. It is found that the difference between these approximations lies essentially in the number of significant figures taken for the approximation; still this subtle difference results in dramatic changes in the predicted course of the reaction. Some results confirm previous findings, but a deeper understanding of the physico‐chemical phenomena and their mathematical representation and another viewpoint of the theory is offered. Additionally, experiments and simulations indicate that polymerization rate data alone are not reliable to estimate the value of K, as recently suggested.

Validity of the rigorous nitroxide quasi‐equilibrium assumption as a function of the nitroxide equilibrium constant.  相似文献   


5.
Dendritic multifunctional macroinitiators having six and 12 TIPNO‐based alkoxyamines, TIPNO‐6 and TIPNO‐12 , were synthesized and used in the living radical polymerization of styrene (St), methyl acrylate (MA), N,N‐dimethylacrylamide (DMAAm), and isoprene (IP). The polymerizations of St initiated with TIPNO‐6 gave 6‐arm star polymers with narrow polydispersities of 1.14–1.18. In the polymerizations of MA initiated with TIPNO‐6 and TIPNO‐12 , the influences of added TIPNO on the polydispersity indexes (PDIs) of the resulting star polymers were first investigated, and this led to the successful formation of poly(MA) star polymers with narrow polydispersities (1.10–1.18). Moreover, the polymerizations of DMAAm and IP from TIPNO‐6 in the presence or absence of TIPNO were briefly investigated. The benzyl ether bonds of the poly(St) and poly(MA) star polymers were cleaved by treating with Me3SiI or Pd/C, and the resulting arm's parts were analyzed with SEC. The PDIs of the resulting arm parts were low (1.19–1.23), and the Mns agreed with the Mn,theor, indicating that the poly(St) and poly(MA) star polymers had well‐controlled arms. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4364–4376, 2007  相似文献   

6.
Controlled/living radical polymerization systems in which the active period is extremely small, ϕA ≪ 1, such as the cases of stable free radical mediated polymerization (or nitroxide mediated polymerization) and atom transfer radical polymerization, are considered theoretically. The polymerization rate, Rp, for such systems increases by lowering the trapping agent concentration [X]. When the polymerization is conducted inside small particles, Rp decreases with D below the diameter Dp,SMC at which a single molecule concentration (SMC) is equal to [X]bulk. On the other hand, when the average number of trapping agents in a particle is smaller than about 10, the fluctuation of nX among particles is significant, which leads to a larger Rp than in the cases where all particles contain the same nX. Because of the effects of SMC and fluctuation, Rp may show an acceleration window, Dp,SMC < Dp < Dp,Fluct where Rp is slightly larger than that in bulk.

  相似文献   


7.
We report a simple preparation of three‐armed (A3‐type) star polymers based on the arm‐first technique, using a click‐reaction strategy between a well‐defined azide‐end‐functionalized polystyrene, poly(tert‐butyl acrylate), or poly(ethylene glycol) precursor and a trisalkyne‐functional initiator, 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]ethane. The click‐reaction efficiency for A3‐type star formation has been investigated with gel permeation chromatography measurements (refractive‐index detector). The gel permeation chromatography curves have been split with the deconvolution method (Gaussian area), and the efficiency of A3‐type star formation has been found to be 87%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6458–6465, 2006  相似文献   

8.
9.
Methyl methacrylate and butyl acrylate monomers are copolymerized by atom‐transfer radical polymerization, affording polymers with well‐controlled molecular weight and low polydispersity. A kinetic analysis of this system is compared with the corresponding free‐radical polymerization system. The copolymerization rate follows an opposite trend to that observed in conventional copolymerization. This fact is attributed to a smaller population of radicals generated in the reaction, since the relative fraction of propagating radicals is the same as that in classical copolymerization.  相似文献   

10.
A facile strategy for synthesis of α‐heterobifunctional polystyrenes is reported. The novel functional polystyrenes have been successfully synthesized via a combination of atom transfer radical polymerization (ATRP) and chemical modification of end‐functional groups. First, ε‐caprolactone end‐capped polystyrenes with controlled molecular weight and low polydispersity were prepared by ATRP of styrene using α‐bromo‐ε‐caprolactone (αBrCL) as an initiator. Then, removal of the terminal bromine atom was performed with iso‐propylbenzene in the presence of CuBr/PMDETA. Finally, ring‐opening modifications of the caprolactone group were carried out with amines, n‐butanol and H2O to produce novel polystyrenes containing two different functional groups at one end.

  相似文献   


11.
Compartmentalization and nitroxide partitioning in NMP in dispersed systems have been investigated by modeling and simulations. Compartmentalization comprises the segregation effect on termination and the confined space effect on deactivation. Under certain conditions, it is possible to obtain an improvement in both control and livingness. The particle size threshold for compartmentalization, decreases with any system change that leads to a decrease in the number of propagating radicals and/or nitroxides per particle, and vice versa. There is direct competition between the confined space effect on deactivation and nitroxide exit–the more water‐soluble the nitroxide, the weaker the confined space effect. Nitroxide partitioning leads to an increase in polymerization rate and loss in control/livingness.

  相似文献   


12.
A PTFE film surface was modified using a combined plasma/ozone‐activated process. The modified PTFE film was further reacted with 2‐bromoisobutyryl bromide to incorporate ATRP initiators in the film surface. Surface‐initiated ATRP on PTFE films was performed using sodium styrene sulfate as a monomer. The poly(sodium styrene sulfate) chain length grafted onto PTFE film surfaces increased with increasing reaction time. Analysis using X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and a contact angle analyzer gave evidence of the success of the PTFE surface modifications.

  相似文献   


13.
The synthesis of a new sterically highly hindered 7‐membered alkoxyamine, 2,2,7,7‐tetraethyl‐1‐(1‐phenylethoxy)‐1,4‐diazepan‐5‐one ( 4 ), starting from known 2,2,6,6‐tetraethyl‐1‐(1‐phenylethoxy)piperidin‐4‐one ( 3 ) via a Beckmann‐type rearrangement is presented. It is shown that ring‐enlargement by insertion of an NH moiety in going from 3 to 4 leads to a more efficient regulator for nitroxide‐mediated controlled living radical styrene (= ethenylbenzene) and butyl acrylate (= butyl prop‐2‐enoate) polymerization. In addition to the polymerization experiments, kinetic data on the reversible C? O bond homolysis of alkoxyamines 3 and 4 are presented.  相似文献   

14.
A mechanistic model is developed for high‐temperature (138 °C) styrene semibatch thermally and conventionally initiated FRP, as well as NMP with a two‐component initiating system (tert‐butyl peroxyacetate, 4‐hydroxy‐TEMPO). The model, using kinetic coefficients from literature, provides a good representation of the FRP experimental results. Implementation of a gel effect correlation to represent the change in the diffusion‐controlled termination rate coefficient with conversion improves the fit to the thermally initiated system, but is not required to represent the production of low molecular weight material ( Dalton) by conventionally initiated FRP or NMP. The low initiator efficiency found in NMP is well explained by a reaction network involving combination of free nitroxide with methyl radicals formed from initiator decomposition.

  相似文献   


15.
Cobalt‐mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO2). CMRP of VAc is conducted using an alkyl‐cobalt(III) adduct that is soluble in scCO2. Kinetics studies coupled to visual observations of the polymerization medium highlight that the melt viscosity and PVAc molar mass (Mn) are key parameters that affect the CMRP in scCO2. It is noticed that CMRP is controlled for Mn up to 10 000 g mol−1, but loss of control is progressively observed for higher molar masses when PVAc precipitates in the polymerization medium. Low molar mass PVAc macroinitiator, prepared by CMRP in scCO2, is then successfully used to initiate the acrylonitrile polymerization. PVAc‐b‐PAN block copolymer is collected as a free flowing powder at the end of the process although the dispersity of the copolymer increases with the reaction time. Although optimization is required to decrease the dispersity of the polymer formed, this CMRP process opens new perspectives for macromolecular engineering in scCO2 without the utilization of fluorinated comonomers or organic solvents.

  相似文献   


16.
A new functional lactone, α‐iodo‐ε‐caprolactone (αIεCL), was synthesized from ε‐caprolactone by anionic activation using a non‐nucleophilic strong base (lithium diisopropylamide) followed by an electrophilic substitution with iodine chloride. Ring‐opening (co)polymerizations of the resulting monomer with ε‐caprolactone were carried out using tin 2‐ethylhexanoate as a catalyst in toluene at 100 °C. Homopolymerization of αIεCL was achieved, and poly(αIεCL) was fully characterized by SEC, 1H NMR and elemental analysis. Random copolymerizations of αIεCL with εCL were controlled with experimental molecular weights close to the theoretical values, narrow molecular weight distributions and a good agreement between experimental and theoretical molar compositions of αIεCL.

  相似文献   


17.
Summary: Controlled polymerization of N‐isopropylacrylamide (NIPAAM) was achieved by atom transfer radical polymerization (ATRP) using ethyl 2‐chloropropionate (ECP) as initiator and CuCl/tris(2‐dimethylaminoethyl)amine (Me6TREN) as a catalytic system. The polymerization was carried out in DMF:water 50:50 (v/v) mixed solvent at 20 °C. The first order kinetic plot was linear up to 92% conversion. Controlled molecular weights up to 2.2 × 104 and low polydispersities (1.19) were obtained. The living character of the polymerization was also demonstrated by self‐blocking experiments. Block copolymers with N,N‐dimethylacrylamide (DMAAM) and 3‐sulfopropyl methacrylate (SPMA) were successfully prepared.

Molecular weights and polydispersities of polyNIPAAM versus NIPAAM conversion for two different degrees of polymerization.  相似文献   


18.
The most abundant naturally occurring terpene, α‐pinene, which cannot be directly polymerized into high polymers by any polymerization method, was quantitatively converted under visible‐light irradiation into pinocarvone, which possesses a reactive exo methylene group. The bicyclic vinyl ketone was quantitatively polymerized in fluoroalcohols by selective (99 %) ring‐opening radical polymerization of the four‐membered ring, which results in unique polymers containing chiral six‐membered rings with conjugated ketone units in the main chain. These polymers display good thermal properties, optical activities, and contain reactive conjugated ketone units. Reversible addition fragmentation chain transfer (RAFT) polymerization was successfully accomplished by using appropriate trithiocarbonate RAFT agents, enabling the synthesis of thermoplastic elastomers based on controlled macromolecular architectures.  相似文献   

19.
ATRP of 2‐(N,N‐dimethylamino)ethyl acrylate (DMAEA) was investigated using CuBr or CuCl with different multidentate ligands. The catalyst was found active for DMAEA polymerization when ligated with tris[2‐(N,N‐dimethylamino)ethyl]amine. Good control over molecular weight was achieved, but quaternization of the terminal monomeric/polymeric tertiary amine by the C Br group of polyDMAEA caused chain termination. Using a chloride‐based system helped to suppress chain termination. Amphiphilic poly(methyl acrylate)‐block‐polyDMAEA was synthesized using polyMA as a macroinitiator.

Molecular weights and polydispersities of polyDMAEA versus DMAEA conversion for different catalyst systems.  相似文献   


20.
Two samples of ABCD 4‐miktoarm star quarterpolymer with A = polystyrene (PS), B = poly(ε‐caprolactone) (PCL), C = poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA), and D = poly(ethylene glycol) (PEG) were prepared using click reaction strategy (Cu(I)‐catalyzed Huisgen [3 + 2] reaction). Thus, first, predefined block copolymers of different polymerization routes, PS‐b‐PCL with azide and PMMA‐b‐PEG and PtBA‐b‐PEG copolymers with alkyne functionality, were synthesized and then these blocks were combined together in the presence of Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst in DMF at room temperature to give the target 4‐miktoarm star quarterpolymers. The obtained miktoarm star quarter polymers were characterized by GPC, NMR, and DSC measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1218–1228, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号