首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Controlled synthesis of low‐dimensional materials, such as nanoparticles, nanorods, and hollow nanospheres, is vitally important for achieving desired properties and fabricating functional devices. We report a systematic investigation of the growth of low‐dimensional sub‐100 nm SnO2 hollow nanostructures by a mild template‐ and surfactant‐free hydrothermal route, aiming to achieve precise control of morphology and size. The starting materials are potassium stannate and urea in an ethylene glycol (EG)/H2O system. We found the size of the SnO2 hollow nanospheres can be controlled by simply adjusting the urea concentration. Investigation of the mechanism of formation of the SnO2 hollow nanospheres revealed that reaction time, urea concentration, and reaction temperature make significant contributions to the growth of hollow nanospheres. On switching the solvent from EG/H2O to H2O or ethanol, the SnO2 nanostructures changed from nanospheres to ultrafine nanorods and nanoparticles. On the basis of reaction parameter dependent experiments, oriented self‐assembly and subsequent evacuation through Ostwald ripening are proposed to explain the formation of hollow nanostructures. Their size‐dependent optical properties, including UV/Vis absorption spectra and room‐temperature fluorescence spectra, were also studied. Moreover, the studies on the photocatalytic property demonstrate that the fabricated hollow structures have slightly enhanced photocatalytic degradation activity for rhodamine B when exposed to mercury light irradiation compared to solid SnO2 nanospheres under the same conditions. The synthesized tin oxide nanoparticles display high photocatalytic efficiency and have potential applications for cleaning polluted water in the textile industry.  相似文献   

2.
Magnetic composite nanospheres (MCS) were first prepared via mini‐emulsion polymerization. Subsequently, the hybrid core–shell nanospheres were used as carriers to support gold nanoparticles. The as‐prepared gold‐loading magnetic composite nanospheres (Au‐MCS) had a hydrophobic core embed with γ‐Fe3O4 and a hydrophilic shell loaded by gold nanoparticles. Both the content of γ‐Fe3O4 and the size of gold nanoparticles could be controlled in our experiments, which resulted in fabricating various materials. On one hand, the Au‐MCS could be used as a T2 contrast agent with a relaxivity coefficient of 362 mg?1 ml S?1 for magnetic resonance imaging. On the other hand, the Au‐MCS exhibited tunable optical‐absorption property over a wavelength range from 530 nm to 800 nm, which attributed to a secondary growth of gold nanoparticles. In addition, dynamic light scattering results of particle sizing and Zeta potential measurements revealed that Au‐MCS had a good stability in an aqueous solution, which would be helpful for further applications. Finally, it showed that the Au‐MCS were efficient catalysts for reductions of hydrophobic nitrobenzene and hydrophilic 4‐nitrophenol that could be reused by a magnetic separation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
New kinds of narrowly distributed protein‐based nanoparticles, bovine serum albumin‐Poly (acrylic acid) (BSA/PAA) nanospheres, and nanocapsules were prepared via in situ polymerization, swelling, and re‐aggregation. The structure and morphology of the nanospheres were characterized by UV‐Vis, FT‐IR, DLS, and TEM. The stability of the BSA/PAA nanospheres and nanocapsules was increased when their skeletons were fixed by cross‐linked agents. The nanospheres carried a positive charge and their size was about 80–110 nm. The protein‐based nanocapsules were stimuli‐responsive with pH value and their hydrodynamic diameter varied from 70 to 230 nm with changes of pH. In vitro release experiments of Rhodamine B and Doxorubicin hydrochloride showed that these biopolymer nanoparticles provided a controlled release of the entrapped drugs for 300 hr. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Fluorescent nanoprobes are highly desirable toolkit for bioimaging applications. This study reports the first example for the synthesis of a nontoxic prototypical fluorescent organic compound 2‐benzo[d]thiazol‐2‐yl)‐3‐(2‐chloro‐4‐(dimethylamino)phenyl)acrylonitrile (BCA) and its entrapment into the poly[cyclotriphosphazene‐co‐polyethyleneimine] cross‐linked (PCPEI) nanospheres named as BCA@PCPEI for targeted cell imaging application. The as‐prepared BCA@PCPEI nanospheres were thoroughly characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and phosphorus‐31 nuclear magnetic resonance (31P‐NMR) analyses. The surface functional analysis of the nanospheres was performed by X‐ray photoelectron spectroscopy (XPS), which proves that the content ratios of elements belong to the precursors concentrations. The as‐prepared nanospheres displayed emission at 606 nm with bright orange fluorescence at any concentration. Moreover, the nanospheres were also less cytotoxic and maintained remarkable cell viability up to 100 μg/mL. Owing to the fluorescence with higher emission, this material has shown excellent cell imaging performance with better targeting ability to HeLa cells.  相似文献   

5.
A simple,mild,and time-saving method is employed to synthesize Ag-SiO2 composite nanospheres with Ag nanoparticles uniformly distributed on the surface of SiO2 nanoparticles.The chemical elements and the morphology of Ag-SiO2 composite nanospheres were analyzed with transmission electron microscopy(TEM),X-ray power diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).On the surface of Ag-SiO2 composite nanospheres,silane coupling agent(KH-550)is introduced as an intermediary to connect the surfaces of SiO2 nanospheres and Ag nanoparticles,which is also helpful for avoiding the aggregation of Ag nanoparticles.It is found that Ag-SiO2 composite nanospheres have very good catalytic properties for the reduction of organic dyes,which may have potential application in wastewater treatment.  相似文献   

6.
A versatile template‐assisted strategy for the preparation of monodispersed rattle‐type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA‐g‐P3HT hybrid nanorattles; PTEMA: poly(2‐(thiophen‐3‐yl)ethyl methacrylate; P3HT: poly(3‐hexylthiophene), was reported. The Au@silica core‐shell nanoparticles, prepared by the modified Stöber sol–gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core‐double shell nanospheres. Subsequent oxidative graft polymerization of 3‐hexylthiophene from the exterior surface of the Au@silica@PTEMA core‐double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA‐g‐P3HT nanospheres). The Au@air@ PTEMA‐g‐P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as‐prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write‐once‐read‐many‐times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA‐g‐P3HT+PS/ITO (ITO: indium‐tin oxide) sandwich thin‐film devices.  相似文献   

7.
Monodisperse, molecularly imprinted nanospheres were synthesized by nonaqueous (mini)emulsion polymerization using a standard monomer mixture of methacrylic acid and ethylene dimethacrylate containing the drug propranolol as a template. The preparation conditions (solvent, amount of surfactant, and amount of employed template) were extensively varied in order to assess their effect on the properties of the resulting polymer nanoparticles. The molecular recognition capability of the nanospheres was evaluated in batch rebinding experiments, and the effect of the nanosphere preparation conditions as well as of the reaction conditions was investigated. In this way, optimal preparation protocols for molecularly imprinted nanoparticles under nonaqueous conditions with the use of a nonionic emulsifier were identified, which lead to nanospheres with a diameter of around 100 nm having an enhanced capacity of specific template rebinding compared to both nonimprinted nanospheres and to particles obtained by emulsion polymerization in water. Best results were obtained with nanospheres prepared in N,N‐dimethylformamide/n‐hexane with a high functional monomer to template ratio. The enantioselectivity of the rebinding process was also demonstrated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Electroconductive poly(N‐butylaniline)–lignosulfonate (PBA–LS) composite nanospheres were prepared in a facile way by in situ, unstirred polymerization of N‐butylaniline with lignosulfonate (LS) as a dispersant and dopant. The LS content was used to optimize the size, structure, electroconductivity, solubility, and silver ion adsorptive capacity of the PBA–LS nanospheres. Uniform PBA–LS10 nanospheres with a minimal mean diameter of 375 nm and high stability were obtained when the LS content was 10 wt %. The PBA–LS10 nanospheres possess an increased electroconductivity of 0.109 S cm?1 compared with that of poly(N‐butylaniline) (0.0751 S cm?1). Furthermore, the PBA–LS10 nanospheres have a maximal silver‐ion sorption capacity of 815.0 mg g?1 at an initial silver ion concentration of 50 mmol L ?1 (25 °C for 48 h), an enhancement of 70.4 % compared with PBA. Moreover, a sorption mechanism of silver ions on the PBA–LS10 nanospheres is proposed. TEM and wide‐angle X‐ray diffraction results showed that silver nanoparticles with a diameter size range of 6.8–55 nm was achieved after sorption, indicating that the PBA–LS10 nanospheres had high reductibility for silver ions.  相似文献   

9.
Isoniazid‐filled Fe2O3 hollow nanospheres (INH@Fe2O3, diameter <30 nm, 48 wt % INH‐load) are prepared for the first time and suggested for tuberculosis therapy. After dextran‐functionalization, the INH@Fe2O3@DEX nanocontainers show strong activity against Mycobacterium tuberculosis (M.tb.) and M.tb.‐infected macrophages. The nanocontainers can be considered as “Trojan horses” and show efficient, active uptake into both M.tb.‐infected macrophages and even into mycobacterial cells.  相似文献   

10.

The reverse microemulsion containing cationic gemini surfactant trimethylene‐1,3‐bis(dodecyldimethyl ammonium bromide) (12‐3‐12, 2Br?) is applied to synthesize ZnS nanospheres. Narrow size distributed ZnS nanospheres with controllable size and uniform morphology are successfully fabricated by direct reaction of ZnCl2 and Na2S in the reverse microemulsion systems. Except for the appearance of large aggregates owing to quantum size effects when the incubation time is 2 h, with increasing the incubation time from 12 to 48 h, the diameter of the ZnS nanosphere can be controlled as 20–25 nm and 140 nm, respectively. X‐ray diffraction (XRD), transmission electron microscopy (TEM), and UV‐visible absorption spectroscopy are applied to characterize the resulting ZnS nanoparticles. In the system used in the present study uniform nanosphere morphology can be synthesized, with the incubation time as an important factor in controlling the size of as‐prepared products.  相似文献   

11.
王洁欣  文利雄  和平  陈建峰 《化学学报》2005,63(14):1298-1302
以纳米碳酸钙颗粒为新颖的无机模板剂, 硅酸钠为无机硅源, 通过溶胶-凝胶法形成CaCO3/SiO2的核壳结构; 随后通过高温煅烧、酸溶和干燥处理, 合成出了具有高比表面积的球形纳米空心二氧化硅粒子. 然后, 分别采用TEM, SEM, EDS, XRD, FTIR和TG等测试手段对样品进行了分析和表征, 并考察了不同合成条件, 如反应温度、反应pH值、煅烧温度和包覆反应时SiO2/CaCO3的配比对纳米空心二氧化硅粒子的比表面积变化. 实验结果表明: 较高的反应温度如60~80 ℃, pH值9左右、SiO2包覆量为碳酸钙质量的10%, 以及煅烧温度为700 ℃, 有利于形成空心形貌较好、比表面较大的球形纳米空心二氧化硅.  相似文献   

12.
In this work, an active nano-catalyst with gold nanoparticles loaded in hollow mesoporous silica nanospheres (HMSNs/Au) was prepared by a one-pot sol-gel method, in which gold ions were loaded in hollow mesoporous silica spheres followed by sodium alginate reduction. The characterization of the HMSNs/Au were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms (BET). The high catalytic activity of HMSNs/Au, denoted as apparent turn-over frequency (TOF), was detected by UV-Vis spectrophotometer for the catalytic reduction of 4-nitrophenol (74.5 h?1) and 2-nitrophenol (108.7 h?1) in the presence of sodium borohydride solution due to the small gold nanoparticles size and overall exposure of active sites. It is expected that this ecofriendly approach to prepare inorganic composited nanoparticles as high active catalysts based on hollow mesoporous materials was a promising platform for loading noble metal nanoparticles.  相似文献   

13.
In this work, core‐shell structured magnetic mesoporous carbon nanospheres were fabricated from the carbonization of metal‐polyphenol coordination polymer‐coated Fe3O4 nanoparticles. The preparation method is simple, fast, versatile, and easy to scale up. Magnetic mesoporous carbon nanospheres exhibit a high specific surface area, high superparamagnetism, and high adsorption efficiencies for phthalates. Four phthalates were extracted from aqueous solutions by using magnetic mesoporous carbon nanospheres via magnetic solid phase extraction. Subsequent analysis was performed by using high‐performance liquid chromatography with ultraviolet detection. The analytical method has good linearity in the concentration range of 1–200 ng/mL for diethyl phthalate, diisobutyl phthalate, and dicyclohexyl phthalate, and 3–200 ng/mL for dipropyl phthalate. The limits of detection were in the range of 0.10–0.62 ng/mL. Compared with previous methods, this method has a lower detection limit, wider linearity range, and faster adsorption and desorption rates. The results indicate that magnetic mesoporous carbon nanospheres are suitable for the enrichment of hydrophobic substances from aqueous solutions.  相似文献   

14.
Oleic acid stabilized superparamagnetic iron oxide nanoparticles (SPION) were selected as the cores for fabrication of sub‐50‐nm monodisperse single‐loaded SPION@SiO2 core–shell nanostructures. Parameters that influence the formation of SPION@SiO2 in the water‐in‐oil reverse microemulsion system have been systematically investigated. The sufficiently high concentration of well‐dispersed SPION, together with an appropriately low injection rate of tetraethoxysilane, were found to be the keys to efficiently prevent the homogeneous nucleation of silica and obtain a high‐quality single‐loaded core–shell nanocomposite. A more detailed mechanism for incorporating oleic acid capped inorganic functional nanoparticles into silica is proposed on the basis of previous reports and our new experimental results. Finally, the as‐synthesized SPION@SiO2 nanospheres are exploited as an MRI‐enhanced contrast agent, and their contrast effect in solution is tested by using a clinical MRI instrument.  相似文献   

15.
We present a systemic investigation of a galvanic replacement technique in which active‐metal nanoparticles are used as sacrificial seeds. We found that different nanostructures can be controllably synthesized by varying the type of more noble‐metal ions and liquid medium. Specifically, nano‐heterostructures of noble metal (Ag, Au) or Cu nanocrystals on active‐metal (Mg, Zn) cores were obtained by the reaction of active‐metal nanoparticles with more noble‐metal ions in ethanol; Ag nanocrystal arrays were produced by the reaction of active‐metal nanoparticles with Ag+ ions in water; spongy Au nanospheres were generated by the reaction of active‐metal nanoparticles with AuCl4? ions in water; and SnO2 nanoparticles were prepared when Sn2+ were used as the oxidant ions. The key factors determining the product morphology are shown to be the reactivity of the liquid medium and the nature of the oxidant–reductant couple, whereas Mg and Zn nanoparticles played similar roles in achieving various nanostructures. When microsized Mg and Zn particles were used as seeds in similar reactions, the products were mainly noble‐metal dendrites. The new approach proposed in this study expands the capability of the conventional nanoscale galvanic replacement method and provides new avenues to various structures, which are expected to have many potential applications in catalysis, optoelectronics, and biomedicine.  相似文献   

16.
Monodisperse colloidal silver nanospheres were synthesized by the reaction of silver nitrate, hydroxylammonium hydrosulphate (NH2OH)2 · H2SO4 and sodium hydroxide in the presence of gelatin as stabilizer. Colloidal nanospheres were characterized by UV-vis absorption spectroscopy, transmission electron microscopy, X-ray diffraction and dynamic light scattering. X-ray diffraction data confirmed that the silver nanospheres were crystalline with face-centered-cubic structure. Transmission electron microscopy analysis revealed the formation of homogeneously distributed silver nanoparticles of spherical morphology and size of the nanoparticles was in the range of 0.7–5.2 nm. Silver nanospheres were stable for more than two months when stored at ambient temperature. Size and size distribution were studied by varying pH, reaction temperature, silver ion concentration in feed solution, concentration of reducing agent and concentration of the stabilizing agent. Catalytic activity of silver nanospheres was tested for the reduction reaction of nitro compounds in sodium borohydride solution. Monodisperse silver nanospheres showed excellent catalytic activity towards the reduction of aromatic nitro compounds. The reduction rate of aromatic nitro compounds had been observed to follow the sequence 4-nitrophenol > 2-nitrophenol > 3-nitrophenol.  相似文献   

17.
A variety of nanosilicas have been widely used to fabricate rough surfaces with superhydrophobic and superhydrophilic properties. In this context, we prepared mixed silica and mixed nanosilica that were generated by the growth and self‐assembly of synthesized monodisperse silica nanospheres (11–30 nm, 363 m2 g?1) on the surface of Sylopol‐948 and Dispercoll S3030 by using a base‐catalyzed sol–gel route. Using this process, the interactions and hierarchical structure between the nano‐ and microsized synthesized silica particles were studied by changing the amount of tetraethoxysilane. The resulting materials were characterized by BET analysis, small‐angle X‐ray scattering (SAXS), dynamic light scattering, FTIR spectroscopy, and SEM. The mixed silica presented a higher specific surface area (326 m2 g?1), a six‐fold higher percentage of (SiO)6 (44–68 %), and a higher amount of silanol groups (14.0–30.7 %) than Sylopol‐948 (271 m2 g?1, 42.6 %, and 12.5 %, respectively). The morphological and hierarchical structural differences in the silica nanoparticles synthesized on the surface of commercial silica (micrometric or nanometric) were identified by SAXS. Mixed micrometric silica exhibited a higher degree of structural organization between particles than mixed nanosilica.  相似文献   

18.
A facile route to synthesize amorphous TiO2 nanospheres by a controlled oxidation and hydrolysis process without any structure‐directing agents or templates is presented. The size of the amorphous TiO2 nanospheres can be easily turned from 20 to 1500 nm by adjusting either the Ti species or ethanol content in the reaction solution. The phase structure of nanospheres can be controlled by hydrothermal treatment. The TiO2 nanospheres show excellent size‐dependent light‐scattering effects and can be structured into a light‐harvesting layer for dye‐sensitized solar cells with a quite high power conversion efficiency of 9.25 %.  相似文献   

19.
In this paper, size‐controlled and surface‐functionalized RhB‐labeled and Cyclosporin A (CsA)‐loaded polystyrene (PS) nanospheres were successfully synthesized via miniemulsion polymerization. The biophysical properties of PEG functionalized PS nanospheres from protein adsorption, blood compatibility, cell compatibility and cell penetrability showed the nanoparticles with high biocompatibility. These results indicated that PEG modified PS nanospheres showed outstanding properties as low size distribution (0.164), high encapsulation efficiency (98.3%), long re‐calcification time (50% than positive control), low hemolysis ratio (3.19%) and high cell viability (95.3%). This work could be used as a good drug delivery system for CsA.  相似文献   

20.
SiO2 nanospheres coated with silica chemically doped with a ruthenium complex [Ru(Bphen)2Phen? Si]Cl2 (denoted as Ru, there Bphen = 4,7‐diphenyl‐1,10‐phenanthrolin, Phen? Si = modified 1,10‐phenathroline) were prepared using a simple solution‐based method. Field‐emission scanning electron microscopy (FE‐SEM) showed that the pure SiO2 nanospheres with a mean diameter of ~185 nm were successfully coated with Ru complex–chemically doped SiO2 shell with a thickness of ~45 nm. The obtained core‐shell nanosphere materials exhibited bright red triplet metal‐to‐ligand charge transfer (3MLCT) emission, and their photoluminescent intensity was sensitive to oxygen concentration. These properties make them promising candidates for biomarkers and optical oxygen sensors, which can measure the O2 concentration in biological fluids. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号